
Software engineering

UNIT - I

INTRODUCTION:

Software Engineering is a framework for building software and is an engineering approach to

software development. Software programs can be developed without S/E principles and methodologies

but they are indispensable if we want to achieve good quality software in a cost effective manner.

Software is defined as:

Instructions + Data Structures + Documents

Engineering is the branch of science and technology concerned with the design, building, and use of

engines, machines, and structures. It is the application of science, tools and methods to find cost effective

solution to simple and complex problems.

SOFTWARE ENGINEERING is defined as a systematic, disciplined and quantifiable approach for the

development, operation and maintenance of software.

The Evolving role of software

The dual role of Software is as follows:
1. A Product- Information transformer producing, managing and displaying information.

2. A Vehicle for delivering a product- Control of computer(operating system),the communication of

information(networks) and the creation of other programs.

Characteristics of software

• Software is developed or engineered, but it is not manufactured in the classical sense.
• Software does not wear out, but it deteriorates due to change.

• Software is custom built rather than assembling existing components.

THE CHANGING NATURE OFSOFTWARE

The various categories of software are
1. System software

2. Application software

3. Engineering and scientific software

4. Embedded software

5. Product-line software

6. Web-applications

7. Artificial intelligence software

• System software. System software is a collection of programs written to serviceother programs

• Embedded software-- resides in read-only memory and is used to control products and systems for

the consumer and industrial markets.

• Artificial intelligence software. Artificial intelligence (AI) software makes use of nonnumeric

algorithms to solve complex problems that are not amenable to computation or straightforwardanalysis

• Engineering and scientific software. Engineering and scientific software have been characterized

by "number crunching" algorithms.

LEGACY SOFTWARE

Legacy software are older programs that are developed decades ago. The quality of legacy software is

poor because it has inextensible design, convoluted code, poor and nonexistent documentation, test cases
and results that are not achieved.

As time passes legacy systems evolve due to following reasons:

 The software must be adapted to meet the needs of new computing environment or technology.

 The software must be enhanced to implement new business requirements.

 The software must be extended to make it interoperable with more modern systems or database

 The software must be rearchitected to make it viable within a network environment.

SOFTWARE MYTHS
Myths are widely held but false beliefs and views which propagate misinformation and confusion.

Three types of myth are associated with software:

- Management myth

- Customer myth

- Practitioner’s myth

MANAGEMENT MYTHS

• Myth(1)-The available standards and procedures for software are enough.
• Myth(2)-Each organization feel that they have state-of-art software development tools since they

have latest computer.

• Myth(3)-Adding more programmers when the work is behind schedule can catch up.

• Myth(4)-Outsourcing the software project to third party, we can relax and let that party build it.

CUSTOMER MYTHS
• Myth(1)- General statement of objective is enough to begin writing programs, the details can be

filled in later.

• Myth(2)-Software is easy to change because software is flexible

PRACTITIONER’S MYTH
• Myth(1)-Once the program is written, the job has been done.

• Myth(2)-Until the program is running, there is no way of assessing the quality.

• Myth(3)-The only deliverable work product is the working program

• Myth(4)-Software Engineering creates voluminous and unnecessary documentation and invariably

slows down software development.

SOFTWARE ENGINEERING-A LAYERED TECHNOLOGY

Fig: Software Engineering-A layered technology

SOFTWARE ENGINEERING - A LAYERED TECHNOLOGY
• Quality focus - Bedrock that supports Software Engineering.

• Process - Foundation for software Engineering

• Methods - Provide technical How-to’s for building software

• Tools - Provide semi-automatic and automatic support to methods

A PROCESS FRAMEWORK

• Establishes the foundation for a complete software process
• Identifies a number of framework activities applicable to all software projects

• Also include a set of umbrella activities that are applicable across the entire softwareprocess.

A PROCESS FRAMEWORK comprises of :

Common process framework Umbrella activities Framework activities
Tasks, Milestones, deliverables SQA points

A PROCESS FRAMEWORK

Used as a basis for the description of process models Generic process activities

• Communication

• Planning

• Modeling

• Construction

• Deployment

A PROCESS FRAMEWORK

Generic view of engineering complimented by a number of umbrella activities

 Software project tracking and control

 Formal technical reviews

 Software quality assurance

 Software configuration management

 Document preparation and production

 Reusability management

 Measurement

 Risk management

CAPABILITY MATURITY MODEL INTEGRATION(CMMI)
• Developed by SEI(Software Engineering institute)
• Assess the process model followed by an organization and rate the organization with different levels

• A set of software engineering capabilities should be present as organizations reach different levels of

process capability and maturity.

CMMI process meta model can be represented in different ways

1.A continuous model

2.A staged model

Continuous model:
-Lets organization select specific improvement that best meet its business objectives and minimize risk-

Levels are called capability levels.

-Describes a process in 2 dimensions

-Each process area is assessed against specific goals and practices and is rated according to the
following capability levels.

CMMI

• Six levels of CMMI

– Level 0:Incomplete

– Level 1:Performed

– Level 2:Managed

– Level 3:Defined

– Level 4:Quantitatively managed

– Level 5:Optimized

CMMI

• Incomplete -Process is adhoc . Objective and goal of process areas are not known

• Performed -Goal, objective, work tasks, work products and other activities of software process are

carried out

• Managed -Activities are monitored, reviewed, evaluated and controlled
• Defined -Activities are standardized, integrated and documented

• Quantitatively Managed -Metrics and indicators are available to measure the process and quality

• Optimized - Continuous process improvement based on quantitative feed back from the user

-Use of innovative ideas and techniques, statistical quality control and other methods for process
improvement.

CMMI - Staged model

- This model is used if you have no clue of how to improve the process for quality software.

- It gives a suggestion of what things other organizations have found helpful to work first

- Levels are called maturity levels

PROCESS PATTERNS
Software Process is defined as collection of Patterns.Process pattern provides a template. It comprises of

• Process Template

-Pattern Name

-Intent

-Types

-Task pattern

- Stage pattern

-Phase Pattern

• Initial Context

• Problem

• Solution

• Resulting Context

• Related Patterns

PROCESS ASSESSMENT

Does not specify the quality of the software or whether the software will be
delivered on time or will it stand up to the user requirements. It attempts to keep a check on the current

state of the software process with the intention of improving it.

PROCESS ASSESSMENT
Software Process

Software Process Assessment Software Process improvement Motivates Capability determination

APPROACHES TO SOFTWARE ASSESSMENT

• Standard CMMI assessment (SCAMPI)
• CMM based appraisal for internal process improvement

• SPICE(ISO/IEC 15504)

• ISO 9001:2000 for software

Personal and Team Software Process

Personal software process

 PLANNING
 HIGH LEVEL DESIGN

 HIGH LEVEL DESIGN REVIEW

 DEVELOPMENT

 POSTMORTEM

Personal and Team Software Process
Team software process Goal of TSP

- Build self-directed teams

- Motivate the teams

- Acceptance of CMM level 5 behavior as normal to accelerate software process improvement

- Provide improvement guidance to high maturity organization

PROCESS MODELS

• Help in the software development

• Guide the software team through a set of framework activities

• Process Models may be linear, incremental or evolutionary

THE WATERFALL MODEL

• Used when requirements are well understood in the beginning

• Also called classic life cycle

• A systematic, sequential approach to Software development

• Begins with customer specification of Requirements and progresses through planning, modeling,

construction and deployment.

This Model suggests a systematic, sequential approach to SW development that begins at the system

level and progresses through analysis, design, code and testing

PROBLEMS IN WATERFALLMODEL

• Real projects rarely follow the sequential flow since they are always iterative

• The model requires requirements to be explicitly spelled out in the beginning, which is often
difficult

• A working model is not available until late in the project time plan

THE INCREMENTAL PROCESS MODEL

• Linear sequential model is not suited for projects which are iterative in nature

• Incremental model suits such projects

• Used when initial requirements are reasonably well-defined and compelling need to provide limited

functionality quickly

• Functionality expanded further in later releases
• Software is developed in increments

The Incremental Model

 Communication

 Planning

 Modeling

 Construction

 Deployment

Communication

Planning
Modeling

Construction
Deployment

Modeling

Construction

INCREMENT 1

INCREMENT 2

:

:

:

:

INCREMENT N

THE INCREMENTAL MODEL

• Software releases in increments

• 1st increment constitutes Core product

• Basic requirements are addressed

• Core product undergoes detailed evaluation by the customer

• As a result, plan is developed for the next increment. Plan addresses the modification of core

product to better meet the needs of customer

• Process is repeated until the complete product is produced

THE RAD (Rapid Application Development) MODEL

• An incremental software process model

• Having a short development cycle

• High-speed adoption of the waterfall model using a component based construction approach

• Creates a fully functional system within a very short span time of 60 to 90 days

Communication

Planning
Modeling

Construction

Communication

Planning

Communication

Planning
Modeling

Construction

Deployment

Deployment

Deployment

The RAD Model consists of the following phases:

Communication Planning Construction

Component reuses automatic code generation testing

Modeling

Business modeling Data modeling Process modeling
Deployment integration delivery feedback

THE RAD MODEL

• Multiple software teams work in parallel on different functions
• Modeling encompasses three major phases: Business modeling, Data modeling and process

modeling

• Construction uses reusable components, automatic code generation and testing

Problems in RAD

• Requires a number of RAD teams

• Requires commitment from both developer and customer for rapid-fire completion ofactivities

• Requires modularity

• Not suited when technical risks are high

EVOLUTIONARY PROCESSMODEL

• Software evolves over a period of time

• Business and product requirements often change as development proceeds making a straight-line

path to an end product unrealistic

• Evolutionary models are iterative and as such are applicable to modern dayapplications

Types of evolutionary models

– Prototyping

– Spiral model

– Concurrent development model

PROTOTYPING

• Mock up or model(throw away version) of a software product

• Used when customer defines a set of objective but does not identify input, output, or processing
requirements

• Developer is not sure of:

– efficiency of an algorithm
adaptability of an operating system

– human/machine interaction

Communication Quick Plan

Quick Design

Build Prototype Deployment & Delivery

STEPS IN PROTOTYPING

• Begins with requirement gathering

• Identify whatever requirements are known

• Outline areas where further definition is mandatory

• A quick design occur

• Quick design leads to the construction of prototype

• Prototype is evaluated by the customer

• Requirements are refined

• Prototype is turned to satisfy the needs of customer

LIMITATIONS OF PROTOTYPING
• In a rush to get it working, overall software quality or long term maintainability are generally

overlooked

• Use of inappropriate OS or PL

• Use of inefficient algorithm

THE SPIRAL MODEL

An evolutionary model which combines the best feature of the classical life cycle and

the iterative nature of prototype model. Include new element : Risk element. Starts in middle and
continually visits the basic tasks of communication, planning, modeling, construction and deployment

THE SPIRAL MODEL

• Realistic approach to the development of large scale system and software

• Software evolves as process progresses

• Better understanding between developer and customer

• The first circuit might result in the development of a product specification

• Subsequent circuits develop a prototype

• And sophisticated version of software

THE CONCURRENT DEVELOPMENT MODEL

• Also called concurrent engineering

• Constitutes a series of framework activities, software engineering action, tasks and their associated

states

• All activities exist concurrently but reside in different states

• Applicable to all types of software development

• Event generated at one point in the process trigger transitions among the states

A FINAL COMMENT ON EVOLUTIONARY PROCESS

• Difficult in project planning

• Speed of evolution is not known

Does not focus on flexibility and extensibility (more emphasis on high quality)

• Requirement is balance between high quality and flexibility and extensibility

THE UNIFIED PROCESS

Evolved by Rumbaugh, Booch, Jacobson. Combines the best features their OO models. Adopts

additional features proposed by other experts. Resulted in Unified Modeling Language (UML). Unified

process developed Rumbaugh and Booch. A framework for Object-Oriented Software

Engineering using UML

PHASES OF UNIFIED PROCESS

• INCEPTION PHASE

• ELABORATION PHASE

• CONSTRUCTION PHASE

• TRANSITION PHASE

 The Unified Process (UP)

UNIFIED PROCESS WORK PRODUCTS

Tasks which are required to be completed during different phases

1. Inception Phase
*Vision document

*Initial Use-Case model

*Initial Riskassessment

*Project Plan

2. Elaboration Phase

*Use-Case model
*Analysis model

*Software Architecture description

*Preliminary design model

*Preliminary model

3. Construction Phase
*Design model

*System components

*Test plan and procedure

*Test cases

*Manual

4. Transition Phase
*Delivered software increment

*Beta test results

*General user feedback

Software engineering

Unit II

System requirements

• Requirements analysis is very critical process that enables the success of a system or

software project to be assessed.

• Requirements are generally split into two types:

 Functional and

 Non-functional requirements.

Functional Requirements:

• These are the requirements that the end user specifically demands as basic facilities that

the system should offer. All these functionalities need to be necessarily incorporated into

the system as a part of the contract.

• These are represented or stated in the form of input to be given to the system, the

operation performed and the output expected.

• They are basically the requirements stated by the user which one can see directly in the

final product, unlike the non-functional requirements.

NON- FUNCTIONAL REQUIREMENTS:

• NON- FUNCTIONAL REQUIREMENTS, As the name suggests, are requirements that

are not directly concerned with the specific functions delivered by the system.

• These are basically the quality constraints that the system must satisfy according to the

project contract. The priority or extent to which these factors are implemented varies

from one project to other. They are also called non-behavioral requirements.

The type of non-functional requirements are:

 Product requirements: These requirements specify product behavior.

 Organizational requirements: These requirements are derived from policies and

procedures in the customer’s and developer’s organization.

 External requirements: This broad heading covers all requirements that are derived

from factors external to the system and its development process.

USER REQUIREMENTS:

• The user requirements for a system should describe the functional and non-functional

requirements so that they are understandable by system users without detailed technical

knowledge.

• If you are writing user requirements , you should not use software jargons, structured

notations or formal notations or describe the requirements by describing the system

implementation.

• You should write user requirements in simple language , with simple tables and forms

and intuitive diagrams.

Various problems can arise when requirements are written in natural language sentences in a text

document:

1. Lack of clarity: It is some times difficult to use language in a precise and unambiguous

way without making the document wordy and difficult to read.

2. Requirements confusion: functional requirements, non- functional requirements, system

goals and design information may not be clarity distinguished.

3. Requirements amalgamation: several different requirements may be expressed together

as a single requirement.

System Requirements:

• System requirements are expanded version of the user requirements that are used by

software engineers as the starting point for the system design.

• They add detail and explain how the user requirements should be provided by the system.

• System requirements should simply describe the external behaviour of the system and its

operational constraints.

Natural language is often used to write system requirements specifications as well as user

requirements. However because system requirements are more detailed than user requirements,

natural language specifications can be confusing and hard to understand:

1. Natural language understanding relies on the specification readers and writers using the

same words for the same concept. This leads to misunderstanding because of the

ambiguity of natural language.

2. A Natural language requirements specification is overflexible. You can say the same

thing in completely different ways.

3. There is no easy way to modularise Natural language requirements. It may be difficult to

find all related requirements.

Structured language specifications:

Structured natural language is a way of writing system requirements where the freedom of the

requirements written is limited and all requirements are written in a standard way.

When a standard form is used for specifying functional requirements, the following information

should be included:

 Description of the function or entry being specified.

 Description of its inputs and where these come form

 Description of its outputs and where these go to

 Indication of what other entities are used

 Description of the action to be taken

 If a functional approach is used, a pre-condition setting out what must be true before the

function is called and post-condition specifying what is true after the function is called.

 Description of the of the operation.

Interface requirements:

• Almost all software systems must operate with existing systems that have already been

implemented and installed in an environment.

• If the new system and the existing system must work together, The interfaces of existing

systems have to be precisely specified.

• These specifications should be defined early in the process and included in the

requirements document.

There are three types of interface that may have to be:

 Procedural interface: Where existing programs or sub-systems offer a range of services

that accessed by calling interface procedures. These interfaces are sometimes called

Application Programming Interfaces(APIs)

 Data structures: That are passed from one sub-system to another. Graphical data models

are the best notations for this type of description.

 Representation of data: That have been established for an existing sub-system. These

interfaces are most common in embedded, real-time-system. Some programming

languages such as Ada support this level of specification.

SOFTWARE REQUIREMENTS DOCUMENT:

The software requirements document(sometimes called the software requirements specification

or SRS) is the official statement of what the system developers should implement.

It should include both the user requirements for a system and a detailed specification of the

system requirements.

The users of a requirements document:

IEEE Standards suggests the following structure for requirements documents:

REQUIREMENTS ENGINEERING PROCESS

To create and maintain a system requirement document. The overall process includes four high

level requirements engineering sub-processes:

1. Feasibility study--Concerned with assessing whether the system is useful to the business

2. Elicitation and analysis--Discovering requirements

3. Specifications--Converting the requirements into a standard form

4. Validation-- Checking that the requirements actually define the system that the customer

wants

SPIRAL REPRESENTATION OF REQUIREMENTSENGINEERING PROCESS

Process represented as three stage activity. Activities are organized as an iterative

process around a spiral. Early in the process, most effort will be spent on understanding

high-level business and the use requirement. Later in the outer rings, more effort will be

devoted to system requirements engineering and system modeling

Three level process consists of:

1. Requirements elicitation

2. Requirements specification

3. Requirements validation

FEASIBILITY STUDIES

The requirement engineering process should starts with a feasibility study.

Starting point of the requirements engineering process

 Input: Set of preliminary business requirements, an outline description of the

system and howthe system is intended to support business processes

 Output: Feasibility report that recommends whether or not it is worth carrying out

further Feasibility report answers a number of questions:

 Does the system contribute to the overall objective:

 Can the system be implemented using the current technology and within given cost

and schedule

 Can the system be integrated with other system which are already in place.

REQUIREMENTS ELICITATION ANALYSIS
Involves a number of people in an organization.
Stakeholder definition-- Refers to any person or group who will be affected by the system directly or

indirectly i.e. End-users, Engineers, business managers, domain experts.

Reasons why eliciting is difficult

1. Stakeholder often don’t know what they want from the computer system

2. Stakeholder expression of requirements in natural language is sometimes difficult to Understand.

3. Different stakeholders express requirements differently

4. Influences of political factors Change in requirements due to dynamic environments.

5. the economic and business environment in which the analysis takes place is dynamic

REQUIREMENTS ELICITATION PROCESS

Process activities

1. Requirement Discovery -- Interaction with stakeholder to collect their

requirements including domain and documentation

2. Requirements classification and organization -- Coherent clustering of

requirements from unstructured collection of requirements

3. Requirements prioritization and negotiation -- Assigning priority to

requirements, Resolves conflicting requirements through negotiation

4. Requirements documentation -- Requirements be documented and placed in the next

round ofspiral

REQUIEMENTS DICOVERY TECHNIQUES

1. View points --Based on the viewpoints expressed by the stake holder Recognizes

multiple perspectives and provides a framework for discovering conflicts in the

requirements proposed by different stakeholders

Three Generic types of viewpoints

 Interactor viewpoint--Represents people or other system that interact directly with the

system

 Indirect viewpoint--Stakeholders who influence the requirements, but don’t use the

system

 Domain viewpoint--Requirements domain characteristics and constraints that

influence the requirements.

2. Interviewing--Puts questions to stakeholders about the system that they use

and the system to be developed. Requirements are derived from the answers.

Two types of interview

– Closed interviews where the stakeholders answer a pre-defined set of questions.

– Open interviews discuss a range of issues with the stakeholders for better

understanding their needs.

Effective interviewers

a) Open-minded: no pre-conceived ideas

b) Prompter: prompt the interviewee to start discussion with a question or a

proposal

3. Scenarios --Easier to relate to real life examples than to abstract description. Starts

with an outline of the interaction and during elicitation, details are added to create a

complete description of that interaction

Scenario includes:

1. Description at the start of the scenario

2. Description of normal flow of the event

3. Description of what can go wrong and how this is handled

4. Information about other activities parallel to the scenario

5. Description of the system state when the scenario finishes

REQUIREMENTS VALIDATION

Concerned with showing that the requirements define the system that the customer wants.

Important because errors in requirements can lead to extensive rework cost.

During the requirement validation process, checks should be carried out on the

requirements in the requirements document.

These checks include:

 Validity checks --Verification that the system performs the intended function by the user

 Consistency check --Requirements should not conflict

 Completeness checks --Includes requirements which define all functions and

constraints intended by the system user

 Realism checks --Ensures that the requirements can be actually implemented

 Verifiability -- Testable to avoid disputes between customer and developer.

VALIDATION TECHNIQUES:

 Requirements reviews – the requirements are analysed systematically by a team of

reviewers.

Reviewers check the following:

(a) Verifiability: Testable

(b) Comprehensibility

(c) Traceability

(d) Adaptability

 Prototyping- an executable model of the system is demonstrated to end- users and

customers.

 Test- case generation – Requirements should be testable.

Requirements management

Requirements are likely to change for large software systems and as such requirements

management process is required to handle changes.

Reasons for requirements changes
a) Diverse Users community where users have different requirements and priorities

b) System customers and end users are different

c) Change in the business and technical environment after installation Two classes of

requirements

d) Enduring requirements: Relatively stable requirements

e) Volatile requirements: Likely to change during system development process or during

operation

Requirements management planning

An essential first stage in requirement management process. Planning process consists of the
following

1. Requirements identification -- Each requirement must have unique tag for

cross reference and traceability

2. Change management process -- Set of activities that assess the impact and cost of

changes

3. Traceability policy -- A matrix showing links between requirements and other

elements of software development

4. CASE tool support --Automatic tool to improve efficiency of change management

process. Automated tools are required for requirements storage, change management

and traceability management

Traceability

Maintains three types of traceability information.
 Source traceability--Links the requirements to the stakeholders
 Requirements traceability--Links dependent requirements within the requirements

document

 Design traceability-- Links from the requirements to the design module

CASE tools:

 Requirement storage – should maintained in a secure, managed data store.

 Change management – simplified if active tool support is available.

 Traceability management – allows related requirements to be discovered.

Requirements change management:

There are Three principle stages to a change management process:

1. Problem analysis and change specification-- Process starts with a specific

change proposaland analysed to verify that it is valid

2. Change analysis and costing--Impact analysis in terms of cost, time and risks

3. Change implementation--Carrying out the changes in requirements document,

system design and its implementation

SYSTEM MODELS

Used in analysis process to develop understanding of the existing system or new system.

Excludes details. An abstraction of the system Types of system models

1. Context models 2. Behavioral models 3.Data models 4.Object models 5.Structured

models

CONTEXT MODELS

A type of architectural model. Consists of sub-systems that make up an entire system First step:

To identify the subsystem. Represent the high level architectural model as simple block diagram

• Depict each sub system a named rectangle

• Lines between rectangles indicate associations between subsystems Disadvantages

--Concerned with system environment only, doesn't take into account other systems, which may

take data or give data to the model

The context of an ATM system consists of the following Auto-teller system

Security system Maintenance system Account data base Usage database

Branch accounting system Branch counter system

Behavioral models

Describes the overall behavior of a system. Two types of behavioral model

1. Data Flow models 2.State machine models

Data flow models --Concentrate on the flow of data and functional transformation on that data.

Show the processing of data and its flow through a sequence of processing steps. Help analyst

understand what is going on.

Advantages

-- Simple and easily understandable

-- Useful during analysis of requirements

State machine models

Describe how a system responds to internal or external events. Shows system states and events

that cause transition from one state to another. Does not show the flow of data within the system.

Used for modeling of real time systems

Exp: Microwave oven

Assumes that at any time, the system is in one of a number of possible states. Stimulus triggers a

transition from on state to another state

Disadvantage

-- Number of possible states increases rapidly for large system models

DATA MODELS

Used to describe the logical structure of data processed by the system. An entity-relation-

attribute

model sets out the entities in the system, the relationships between these entities and the entity

attributes.

Widely used in database design. Can readily be implemented using relational databases. No

specific

notation provided in the UML but objects and associations can be used.

Data dictionary entries

OBJECT MODELS

An object oriented approach is commonly used for interactive systems development.

Expresses the systems requirements using objects and developing the system in an

object oriented PL such as c++ A object class: An abstraction over a set of objects that

identifies common attributes. Objects are instances of object class. Many objects may be

created from a single class.

Analysis process

-- Identifies objects and object classes Object class in UML

--Represented as a vertically oriented rectangle with three sections

The name of the object class in the top section

The class attributes in the middle section

The operations associated with the object class are in lower section.

Object name

Class attribute

Operation()

OBJECT MODELS INHERITANCE MODELS

A type of object oriented model which involves in object classes attributes. Arranges

classes into an inheritance hierarchy with the most general object class at the top of

hierarchy Specialized objects inherit their attributes and services

UML notation

-- Inheritance is shown upward rather than downward

--Single Inheritance: Every object class inherits its attributes and operations from a single parent

class

--Multiple Inheritance : A class of several of several parents.

OBJECT MODELS OBJECT AGGREGATION

Some objects are grouping of other objects. An aggregate of a set of other objects. The

classes representing these objects may be modeled using an object aggregation model A

diamond shape on the source of the link represents the composition.

OBJECT-BEHAVIORAL MODEL

-- Shows the operations provided by the objects

-- Sequence diagram of UML can be used for behavioral modeling

UNIT III

DESIGN ENGINEERING

DESIGN PROCESS

• Software design is an iterative process through which requirements are translated into a

“blueprint” for constructing the software.

• The blueprint depicts a holistic view of software. That is, the design represented at a high level

of abstraction- a level that can directly traced to the specific system objective and more detailed

data, functional, and behavioral requirements.

 McGlaughlin suggests three characteristics that serve as a guide for the evaluation of a good

design:

1. The design must implement all of the explicit requirements contained in the analysis model, and

it must accommodate all of the implicit requirements desired by the customer.

2. The design must be readable, understandable guide for those who generate code and for those

who test and sequentially support the software.

3. The design should provide a complete picture of the software, addressing the data, functional,

and behavioral domains from an implementation perspective.

DESIGN QUALITY

QUALITY GUIDELINES

• Uses recognizable architectural styles or patterns

• Modular; that is logically partitioned into elements or subsystems

• Distinct representation of data, architecture, interfaces and components

• Appropriate data structures for the classes to be implemented

• Independent functional characteristics for components

• Interfaces that reduces complexity of connection

• Repeatable method

QUALITY ATTRIBUTES

 FURPS quality attributes

1. Functionality

 Feature set and capabilities of programs

 Security of the overall system

2. Usability

 user-friendliness

 Aesthetics

 Consistency

 Documentation

3. Reliability

 Evaluated by measuring the frequency and severity of failure

 Mean-time-to-failure(MTTF)

 Recover from failure

4. Performance

 Speed, response time, resource consumption, throughput, efficiency.

5. Supportability

 Extensibility

 Adaptability

 Serviceability

 maintainability

DESIGN CONCEPTS

• A set of fundamental software design concepts has evolved over the history of software

engineering.

• Although the degree of interest in each concept has varied over the years, each has stood the test

of time.

• Each provides the software designer with a foundation from which more sophisticated design

methods can be applied.

Design concepts are:

1. Abstractions

2. Architecture

3. Patterns

4. Modularity

5. Information Hiding

6. Functional Independence

7. Refinement

8. Re-factoring

9. Design Classes

1. ABSTRACTION

Many levels of abstraction.

• Highest level of abstraction: Solution is slated in broad terms using the language of the

problem environment

• Lower levels of abstraction: More detailed description of the solution is provided

• Procedural abstraction: Refers to a sequence of instructions that a specific and limited

function

• Data abstraction: Named collection of data that describe a data object

2. ARCHITECTURE

Structure organization of program components (modules) and their interconnection Architecture

Models

• Structural Models-- An organized collection of program components

• Framework Models-- Represents the design in more abstract way

• Dynamic Models-- Represents the behavioral aspects indicating changes as a function of

external events

• Process Models-- Focus on the design of the business or technical process

3. PATTERNS

Provides a description to enables a designer to determine the followings:

a) whether the pattern is applicable to the current work

b) Whether the pattern can be reused

c) Whether the pattern can serve as a guide for developing a similar but functionally or structurally

different pattern

4. MODULARITY

• Divides software into separately named and addressable components, sometimes called

modules. Modules are integrated to satisfy problem requirements. Consider two problems p1

and p2. If the complexity of p1 is cp1 and of p2 is cp2 then effort to solve p1=cp1 and effort to

solve p2=cp2 If cp1>cp2 then ep1>ep2

• The complexity of two problems when they are combined is often greater than the sum of the

perceived complexity when each is taken separately.

• Based on Divide and Conquer strategy: it is easier to solve a complex problem when broken

into sub-modules

5. INFORMATION HIDING

Information contained within a module is inaccessible to other modules who do not need

such information. Achieved by defining a set of Independent modules that communicate with one

another only that information necessary to achieve S/W function. Provides the greatest benefits when

modifications are required during testing and later. Errors introduced during modification are less likely

to propagate to other location within the S/W.

6. FUNCTIONAL INDEPENDENCE

A direct outgrowth of Modularity. abstraction and information hiding. Achieved by

developing a module with single minded function and an aversion to excessive interaction with other

modules. Easier to develop and have simple interface. Easier to maintain because secondary effects

caused b design or code modification are limited, error propagation is reduced and reusable modules

are possible. Independence is assessed by two quantitative criteria:

 Cohesion

 Coupling

Cohesion -- Performs a single task requiring little interaction with other components

Coupling--Measure of interconnection among modules. Coupling should be low and cohesion should

be high for good design.

7. REFINEMENT

Process of elaboration from high level abstraction to the lowest level abstraction. High

level abstraction begins with a statement of functions. Refinement causes the designer to elaborate

providing more and more details at successive level of abstractions Abstraction and refinement are

complementary concepts.

8. REFACTORING

Organization technique that simplifies the design of a component without changing its

function or behavior. Examines for redundancy, unused design elements and inefficient or unnecessary

algorithms.

9. DESIGN CLASSES

Class represents a different layer of design architecture. Five types of Design Classes

• User interface class -- Defines all abstractions that are necessary for human computer

interaction

• Business domain class -- Refinement of the analysis classes that identity attributes and services

to implement some of business domain

• Process class -- implements lower level business abstractions required to fully manage the

business domain classes

• Persistent class -- Represent data stores that will persist beyond the execution of the software

System class -- Implements management and control functions to operate and communicate within the

computer environment and with the outside world.

THE DESIGN MODEL

Introduction of Design Model

• The design model can be viewed in two different dimensions.

– (Horizontally) The process dimension

• It indicates the evolution of the parts of the design model as each design task is

executed.

– (Vertically) The abstraction dimension

• It represents the level of detail as each element of the analysis model is

transformed into the design model and then iteratively refined.

• The elements of the design model use many of the same UML diagrams that were used in the

analysis model.

• The difference is that these diagrams are

– Refined and elaborated as part of design;

– More implementation-specific detail is provided,

– Architectural structure and style, components that reside within the architecture,

– Interfaces between the components and with the outside world are all emphasized.

1. Data Design Elements

• Customer’s/ User’s View:

– Data Architecting (Creates a model of data that is represented at a high level of

abstraction). (Build Architecture of Data)

• Program Component Level: The design of Data structure & algorithms.

• Application Level: Translate Data Model into a database.

• Business Level: Data warehouse(Reporting & Analysis of DB) & Data mining(Analysis).

• At last it means creation of Data Dictionary.

2. Architectural Design Elements:

Provides an overall view of the software product(Similar like Floor Plan of house)

• The architectural model [Sha96] is derived from three sources:

(1) Information about the application domain for the software to be built;

(2) Specific requirements model elements such as data flow diagrams or analysis

classes, their relationships and collaborations for the problem at hand;

(3) The availability of architectural styles and patterns

• Difference: An architectural style is a conceptual way of how the system will be created / will

work.

• An architectural pattern describes a solution for implementing a style at the level of subsystems

or modules and their relationships.

3. Interface Design Elements

• The interface design elements for software represent information flows into and out of the

system and how it is communicated among the components defined as part of the architecture.

• For example : A set of detailed drawings (and specifications) for the doors, windows, and

external utilities of a house. These drawings describe the size and shape of doors and windows,

the manner in which they operate, the way in which utility connections (e.g., water, electrical,

gas, telephone) come into the house and are distributed among the rooms depicted in the floor

plan.

• There are three important elements of interface design:

– (1) The user interface (UI);

– (2) External interfaces to other systems, devices, networks, or other producers or

consumers of information;

– (3) Internal interfaces between various design components.

• UI design (increasingly called usability design) is a major software engineering action

• Usability design incorporates

– Visual elements (e.g., layout, color, graphics, interaction mechanisms),

– Ergonomic elements (e.g., information layout and placement, metaphors, UI

navigation),

– Technical elements (e.g., UI patterns, reusable components).

– In general, the UI is a unique subsystem within the overall application architecture.

4. Component-Level Design Elements

• The component-level design for software fully describes the internal detail of each software

component.

• Component elements (detailed drawing of each room, wiring, place of switches…)

– Internal details of each software component

• Data structures,

• algorithmic details,

• interface to access component operation (behavior).

5. Deployment-Level Design Elements

• Deployment-level design elements indicate how software functionality and subsystems will be

allocated within the physical computing environment that will support the software.

• For example, the elements of the SafeHome product are configured to operate within three

primary computing environments

– A home-based PC,

– The SafeHome control panel,

– Server housed at CPI Corp. (providing Internet-based access to the system).

Software architecture:

The architecture of a system describes its major components, their relationships (structures), and how

they interact with each other. Software architecture and design includes several contributory factors

such as Business strategy, quality attributes, human dynamics, design, and IT environment.

Architecture serves as a blueprint for a system. It provides an abstraction to manage the system

complexity and establish a communication and coordination mechanism among components.

 It defines a structured solution to meet all the technical and operational requirements, while

optimizing the common quality attributes like performance and security.

 Further, it involves a set of significant decisions about the organization related to software

development and each of these decisions can have a considerable impact on quality,

maintainability, performance, and the overall success of the final product. These decisions

comprise of −

 Selection of structural elements and their interfaces by which the system is composed.

 Behavior as specified in collaborations among those elements.

 Composition of these structural and behavioral elements into large subsystem.

 Architectural decisions align with business objectives.

 Architectural styles guide the organization.

Data design

Here data design is described at both the architectural and component levels. At the architecture level,

data design is the process of creating a model of the information represented at a high level of

abstraction (using the customer's view of data)

1.Data Design at the Architectural Level

 The challenge is extract useful information from the data environment, particularly when the

information desired is cross-functional.

 To solve this challenge, the business IT community has developed data mining techniques, also

called knowledge discovery in databases (KDD), that navigate through existing databases in an

attempt to extract appropriate business-level information

 However, the existence of multiple databases, their different structures, and the degree of detail

contained with the databases, and many other factors make data mining difficult within an

existing database environment

 An alternative solution, called a data warehouse, adds on additional layer to the data

architecture

 A data warehouse is a separate data environment that is not directly integrated with day-to-day

applications that encompasses all data used by a business

2.Data Design at the Component Level

At the component level, data design focuses on specific data structures required to realize the data

objects to be manipulated by a component.

 Refine data objects and develop a set of data abstractions
 Implement data object attributes as one or more data structures

 Review data structures to ensure that appropriate relationships have been established Set of

principles for data specification:
1. The systematic analysis principles applied to function and behavior should also be applied to

data

2. All data structures and the operations to be performed on each should be identified

3. A data dictionary should be established and used to define both data and program design

4. Low level data design decisions should be deferred until late in the design process

5. The representation of data structure should be known only to those modules that must make

direct use of the data contained within the structure

6. A library of useful data structures and the operations that may be applied to them should be

developed

7. A software design and programming language should support the specification and realization

of abstract data types

Architectural styles and patterns

Architectural styles:

1. Data-centered architecture

 The data store in the file or database is occupying at the center of the architecture.

 Store data is access continuously by the other components like an update, delete, add, modify

from the data store.

 Data-centered architecture helps integrity.

 Pass data between clients using the blackboard mechanism.

 The processes are independently executed by the client components.

2. Data-flow architecture

 This architecture is applied when the input data is converted into a series of manipulative

components into output data.

 A pipe and filter pattern is a set of components called as filters.

 Filters are connected through pipes and transfer data from one component to the next

component.

 The flow of data degenerates into a single line of transform then it is known as batch

sequential.

3. Call and return architectures

This architecture style allows to achieve a program structure which is easy to modify.

Following are the sub styles exist in this category:

a)Main program or subprogram architecture

The program is divided into smaller pieces hierarchically.

The main program invokes many of program components in the hierarchy that program components are

divided into subprogram.

b)Remote procedure call architecture

The main program or subprogram components are distributed in network of multiple computers.

The main aim is to increase the performance.

4. Object-oriented architectures

 This architecture is the latest version of call-and-return architecture.

 It consist of the bundling of data and methods.

5. Layered architectures

 The different layers are defined in the architecture. It consists of outer and inner layer.

 The components of outer layer manage the user interface operations.

 Components execute the operating system interfacing at the inner layer.

 The inner layers are application layer, utility layer and the core layer.

 In many cases, It is possible that more than one pattern is suitable and the alternate

architectural style can be designed and evaluated.

Architectural patterns:

Different Software Architecture Patterns :

1. Layered Pattern

2. Client-Server Pattern

3. Event-Driven Pattern

4. Microkernel Pattern

5. Microservices Pattern

Let’s see one by one in detail.

1.LayeredPattern :

As the name suggests, components(code) in this pattern are separated into layers of subtasks and they

are arranged one above another.

Each layer has unique tasks to do and all the layers are independent of one another. Since each layer

is independent, one can modify the code inside a layer without affecting others.

It is the most commonly used pattern for designing the majority of software. This layer is also known

as ‘N-tier architecture’. Basically, this pattern has 4 layers.

1. Presentation layer (The user interface layer where we see and enter data into an application.)

2. Business layer (this layer is responsible for executing business logic as per the request.)

3. Application layer (this layer acts as a medium for communication between the ‘presentation layer’

and ‘data layer’.

4. Data layer (this layer has a database for managing data.)

Ideal for:

E-commerce web applications development like Amazon.

2.Client-ServerPattern :

The client-server pattern has two major entities. They are a server and multiple clients.

Here the server has resources(data, files or services) and a client requests the server for a particular

resource. Then the server processes the request and responds back accordingly.

Examples of software developed in this pattern:

 Email.

 WWW.

 File sharing apps.

 Banking, etc…

So this pattern is suitable for developing the kind of software listed in the examples.

http://www/

3.Event-DrivenPattern :

Event-Driven Architecture is an agile approach in which services (operations) of the software are

triggered by events.

Well, what does an event mean?

When a user takes action in the application built using the EDA approach, a state change happens and

a reaction is generated that is called an event.

Eg: A new user fills the signup form and clicks the signup button on Facebook and then a FB account

is created for him, which is an event.

Ideal for:

Building websites with JavaScript and e-commerce websites in general.

4.MicrokernelPattern :

Microkernel pattern has two major components. They are a core system and plug-in modules.

 The core system handles the fundamental and minimal operations of the application.

 The plug-in modules handle the extended functionalities (like extra features) and customized

processing.

5.MicroservicesPattern :
The collection of small services that are combined to form the actual application is the concept of

microservices pattern. Instead of building a bigger application, small programs are built for every

service (function) of an application independently. And those small programs are bundled together to

be a full-fledged application.

So adding new features and modifying existing microservices without affecting other microservices

are no longer a challenge when an application is built in a microservices pattern.

Modules in the application of microservices patterns are loosely coupled. So they are easily

understandable, modifiable and scalable.

Architectural design

 As architectural design begins, the software to be developed must be put into context

 That is, the design should define the external entities (other systems, devices, people) that the

software interacts with and the nature of the interaction.

Representing the System in Context

 At the architectural design level, a software architect uses an architectural context diagram

(ACD) to model the manner in which software interacts with entities external to its boundaries.

 The generic structure of the architectural context diagram is illustrated in Figure.

In figure, systems that interoperate with the target system (the system for which an architectural design

is to be developed) are represented as

 Super ordinate systems : those systems that use the target system as part of some

higher-level processing scheme.

 Subordinate systems—those systems that are used by the target system and provide

data or processing that are necessary to complete target system functionality.

 Peer-level systems—those systems that interact on a peer-to- peer basis (i.e.,

information is either produced or consumed by the peers and the target system.

 Actors—entities (people, devices) that interact with the target system by producing or

consuming information.

 Each of these external entities communicates with the target system through an interface (the

small shaded rectangles).

Defining Archetypes

 An archetype is a class or pattern that represents a core abstraction that is critical to the design

of an architecture for the target system.

 In general, a relatively small set of archetypes is required to design even relatively complex

systems.

 Archetypes are the abstract building blocks of an architectural design.

 In many cases, archetypes can be derived by examining the analysis classes defined as part of

the requirements model.

 An archetype is a generic, idealized model of a person, object, or concept from which similar

instances are derived, copied, patterned, or emulated.

 The SafeHome home security function, you might define the following archetypes :

o Node : Represents a cohesive collection of input and output elements of the home

security function.

o For example a node might be included of (1) various sensors and (2) a variety of alarm

(output) indicators.

o Detector : An abstraction that covers all sensing equipment that feeds information into

the target system.

o Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing

lights, bell) for indicating that an alarm condition is occurring.

o Controller. An abstraction that describes the mechanism that allows the arming
(Supporting) or disarming of a node. If controllers reside on a network, they have the
ability to communicate with one another.

Refining the Architecture into Components

 As the software architecture is refined into components.

 Analysis classes represent entities within the application (business) domain that must be

addressed within the software architecture.

 In some cases (e.g., a graphical user interface), a complete subsystem architecture with many

components must be designed.

 For Example : The SafeHome home security function example, you might define the set of top-

level components that address the following functionality:

 External communication management — coordinates communication of the security

function with external entities such as other Internet-based systems and external alarm

notification.

 Control panel processing— manages all control panel functionality.

 Detector management — coordinates access to all detectors attached to the system.

 Alarm processing — verifies and acts on all alarm conditions

 The overall architectural structure (represented as a UML component diagram) is in the

following Figure.

Describing Instantiations of the System

 The architectural design that has been modeled to this point is still relatively high level.

 The context of the system has been represented

 Archetypes that indicate the important abstractions within the problem domain have been

defined,

 The overall structure of the system is apparent, and the major software components have been

identified.

 However, further refinement is still necessary.

 To accomplish this, an actual instantiation of the architecture is developed.It means, again it

simplify by more details.

 The figure demonstrates this concept.

Conceptual model of UML

The Unified Modeling Language (UML) is a standard visual language for describing and modelling

software blueprints. The UML is more than just a graphical language. Stated formally, the UML is

for: Visualizing, Specifying, Constructing, and Documenting.

The artifacts of a software-intensive system (particularly systems built using the object-oriented

style).

Three Aspects of UML:

 Figure – Three Aspects of UML

 Note – Language, Model, and Unified are the important aspect of UML as described in the

map above.

1. Language:

 It enables us to communicate about a subject which includes the requirements and the system.

 It is difficult to communicate and collaborate for a team to successfully develop a system without a

language.

2. Model:

 It is a representation of a subject.

 It captures a set of ideas (known as abstractions) about its subject.

3. Unified:

 It is to bring together the information systems and technology industry’s best engineering

practices.

 These practices involve applying techniques that allow us to successfully develop systems.

A Conceptual Model:

A conceptual model of the language underlines the three major elements:

 The Building Blocks

 The Rules

 Some Common Mechanisms

BASIC STRUCTURAL MODELING

Contents:

1. Classes

2. Relationships

3. Common Mechanisms

4. Diagrams

1.Classes:

 Names

 Attributes

 Operations

2.Relationships:

 Dependencies

 Generalizations

 Associations

 Aggregation

3. Common Mechanisms:

 Notes

 Other Adornments

 Stereotypes

 Tagged Values

 Constraints

4. Diagrams:

Structural Diagrams

The UML's structural diagrams exist to visualize, specify, construct, and document the static aspects

of a system. You can think of the static aspects of a system as representing its relatively stable

skeleton and scaffolding. Just as the static aspects of a house encompass the existence and

placement of such things as walls, doors, windows, pipes, wires, and vents, so too do the static

aspects of a software system encompass the existence and placement of such things as classes,

interfaces, collaborations, components, and nodes.

The UML's structural diagrams are roughly organized around the major groups of things you'll

find when modeling a system.

1.Class diagram Classes, interfaces, and collaborations

2.Component diagram Components

3.Object diagram Objects

4.Deployment diagram Nodes

Behavioral Diagrams

The UML's behavioral diagrams are used to visualize, specify, construct, and document the

dynamic aspects of a system. You can think of the dynamic aspects of a system as representing

its changing parts. Just as the dynamic aspects of a house encompass airflow and traffic through

the rooms of a house, so too do the dynamic aspects of a software system encompass such things

as the flow of messages over time and the physical movement of components across a network.

The UML's behavioral diagrams are roughly organized around the major ways you can

modelthe dynamics of a system.

1.Use case diagram Organizes the behaviors of the system

2.Sequence diagram Focuses on the time ordering of messages

3.Collaboration

diagram

Focuses on the structural organization of objects that send and receive

messages

4.State diagram Focuses on the changing state of a system driven by events

5.Activity diagram Focuses on the flow of control from activity to activity

Class diagram:

The purpose of class diagram is to model the static view of an application. Class diagrams are the

only diagrams which can be directly mapped with object-oriented languages and thus widely

used at the time of construction.

UML diagrams like activity diagram, sequence diagram can only give the sequence flow of the

application, however class diagram is a bit different. It is the most popular UML diagram in the

coder community.

The purpose of the class diagram can be summarized as −

 Analysis and design of the static view of an application.

 Describe responsibilities of a system.

 Base for component and deployment diagrams.

 Forward and reverse engineering.

Sequence Diagram:

1. To model high-level interaction among active objects within a system.

2. To model interaction among objects inside a collaboration realizing a use case.

3. It either models generic interactions or some certain instances of interaction.

Example of a Sequence Diagram

An example of a high-level sequence diagram for online bookshop is given below.

Any online customer can search for a book catalog, view a description of a particular book, add a

book to its shopping cart, and do checkout.

Collaboration diagram:

Notations of a Collaboration Diagram

 Objects: The representation of an object is done by an object symbol with its name and

class underlined, separated by a colon.

 Actors: In the collaboration diagram, the actor plays the main role as it invokes the

interaction. Each actor has its respective role and name. In this, one actor initiates the use

case.

 Links: The link is an instance of association, which associates the objects and actors. It

portrays a relationship between the objects through which the messages are sent. It is

represented by a solid line. The link helps an object to connect with or navigate to

another object, such that the message flows are attached to links.

 Message: It is a communication between objects which carries information and includes

a sequence number, so that the activity may take place. It is represented by a labeled

arrow, which is placed near a link. The messages are sent from the sender to the receiver,

and the direction must be navigable in that particular direction. The receiver must

understand the message.

Use Case Diagrams

The purpose of use case diagram is to capture the dynamic aspect of a system. However, this

definition is too generic to describe the purpose, as other four diagrams (activity, sequence,

collaboration, and Statechart) also have the same purpose. We will look into some specific

purpose, which will distinguish it from other four diagrams.

Use case diagrams are used to gather the requirements of a system including internal and

external influences. These requirements are mostly design requirements. Hence, when a system

is analyzed to gather its functionalities, use cases are prepared and actors are identified.

When the initial task is complete, use case diagrams are modelled to present the outside view.

In brief, the purposes of use case diagrams can be said to be as follows −

 Used to gather the requirements of a system.

 Used to get an outside view of a system.

 Identify the external and internal factors influencing the system.

 Show the interaction among the requirements are actors.

Component Diagrams:

Component diagram is a special kind of diagram in UML. The purpose is also different from all

other diagrams discussed so far. It does not describe the functionality of the system but it

describes the components used to make those functionalities.

Thus from that point of view, component diagrams are used to visualize the physical components

in a system. These components are libraries, packages, files, etc.

Component diagrams can also be described as a static implementation view of a system. Static

implementation represents the organization of the components at a particular moment.

A single component diagram cannot represent the entire system but a collection of diagrams is

used to represent the whole.

The purpose of the component diagram can be summarized as −

 Visualize the components of a system.

 Construct executables by using forward and reverse engineering.

 Describe the organization and relationships of the components.

UNIT-4

TESTING STRATEGIES

Strategic Approach to software testing:

Testing is a set of activities that can be planned in advance and conducted systematically. For

this reason a template for software testing—a set of steps into which we can place specific test

case design techniques and testing methods—should be defined for the software process.

A number of software testing strategies have been proposed in the literature. All provide the

software developer with a template for testing and all have the following generic characteristics:

• Testing begins at the component level2 and works "outward" toward the integration of the

entire computer-based system.

• Different testing techniques are appropriate at different points in time.

• Testing is conducted by the developer of the software and (for large projects) an independent

test group.

• Testing and debugging are different activities, but debugging must be accommodated in any

testing strategy.

 Verification and Validation

Software testing is one element of a broader topic that is often referred to as verification and

validation (V&V). Verification refers to the set of activities that ensure that software

correctly implements a specific function. Validation refers to a different set of activities that

ensure that the software that has been built is traceable to customer requirements. Boehm

states this another way:

Verification:"Are we building the product right?"

Validation: "Are we building the right product?"

 Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs as testing

begins. The people who have built the software are now asked to test the software. This

seems harmless in itself; after all, who knows the program better than its developers?

Unfortunately, these same developers have a vested interest in demonstrating that the

program is error free, that it works according to customer requirements, and that it will be

completed on schedule and within budget. Each of these interests mitigate against thorough

testing.

There are often a number of misconceptions that can be erroneously inferred from the preceeding

discussion: (1) that the developer of software should do no testing at all, (2) that the software

should be "tossed over the wall" to strangers who will test it mercilessly, (3) that testers get

involved with the project only when the testing steps are about to begin. Each of these statements

is incorrect.

Test strategies for Conventional Software

 There are many strategies that can be used to test software.

 At one extreme, you can wait until the system is fully constructed and then conduct tests

on the overall system in hopes of finding errors.

 This approach simply does not work. It will result in buggy software.

 At the other extreme, you could conduct tests on a daily basis, whenever any part of the

system is constructed.

 This approach, although less appealing to many, can be very effective.

 A testing strategy that is chosen by most software teams falls between the two extremes.

 It takes an incremental view of testing,

 Beginning with the testing of individual program units,

 Moving to tests designed to facilitate the integration of the units,

 Culminating with tests that exercise the constructed system.

Unit Test :

Unit testing focuses verification effort on the smallest unit of software design—the

software component or module.

The unit test focuses on the internal processing logic and data structures within the boundaries of

a component.

This type of testing can be conducted in parallel for multiple components.

 Unit tests are illustrated schematically in previous Figure.

 The module interface is tested to ensure that information properly flows into and out of

the program unit under test.

 Local data structures are examined to ensure that data stored temporarily maintains its

integrity during all steps in an algorithm’s execution.

 All independent paths through the control structure are exercised to ensure that all

statements in a module have been executed at least once.

 Boundary conditions are tested to ensure that the module operates properly at

boundaries established to limit or restrict processing.

 Finally, all error-handling paths are tested

 Good design anticipates error conditions and establishes error-handling paths to reroute

or cleanly terminate processing when an error does occur.

Integration Testing:

Integration testing is a systematic technique for constructing the software architecture while at

the same time conducting tests to uncover errors associated with interfacing.

Different Integration Testing Strategies :

 Top-down testing

 Bottom-up testing

 Regression Testing

 Smoke Testing

Top-down testing

 Top-down integration testing is an incremental approach to construction of the software

architecture.

 Modules are integrated by moving downward through the control hierarchy, beginning

with the main control module (main program).

 Modules subordinate (and ultimately subordinate) to the main control module are

incorporated into the structure in either a depth-first or breadth-first manner.

BOTTOM-UP INTEGRATION TESTING:

Bottom-up integration testing, It begins construction and testing with atomic modules (i.e.,

components at the lowest levels in the program structure).

Because components are integrated from the bottom up, the functionality provided by

components subordinate to a given level is always available and the need for stubs is eliminated.

A bottom-up integration strategy may be implemented with the following steps…

1. Low-level components are combined into clusters (sometimes called builds) that perform a

specific software subfunction.

2. A driver (a control program for testing) is written to coordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program structure.

REGRESSION TESTING:

Regression testing is the re-execution of some subset of tests that have already been conducted to

ensure that changes have not propagated unintended side effects.

Whenever software is corrected, some aspect of the software configuration (the program, its

documentation, or the data that support it) is changed.

Regression testing helps to ensure that changes (due to testing or for other reasons) do not

introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re-executing a subset of all test cases or using

automated capture/playback tools.

It is impractical and inefficient to reexecute every test for every program function once a change

has occurred….

Regression testing is a type of software testing that seeks to uncover new software bugs, OR

Regression testing is the process of testing, changes to computer programs to make sure that the

older programming still works with the new changes. Here changes such as enhancements,

patches or configuration changes, have been made to them.

SMOKE TESTING:

Smoke testing is an integration testing approach that is commonly used when product software is

developed

Smoke testing is performed by developers before releasing the build to the testing team and

after releasing the build to the testing team it is performed by testers whether to accept the

build for further testing or not.

It is designed as a pacing (Speedy) mechanism for time-critical projects, allowing the software

team to assess the project on a frequent basis.

Smoke testing provides a number of benefits when it is applied on complex, time critical

software projects.

 Integration risk is minimized. Because smoke tests are conducted daily,

incompatibilities and other show-stopper errors are uncovered early.
 The quality of the end product is improved. Because the approach is construction

(integration) oriented, smoke testing is likely to uncover functional errors as well as

architectural and component-level design errors. If these errors are corrected early, better

product quality will result.

 Error diagnosis and correction are simplified.

 Progress is easier to assess

Black – box and white – box testing

Black – box testing:

Black Box Testing is a software testing method in which the functionalities of software

applications are tested without having knowledge of internal code structure, implementation

details and internal paths. Black Box Testing mainly focuses on input and output of software

applications and it is entirely based on software requirements and specifications. It is also known

as Behavioral Testing.

 Types of Black Box Testing

There are many types of Black Box Testing but the following are the prominent ones –

 Functional testing – This black box testing type is related to the functional requirements

of a system; it is done by software testers.

 Non-functional testing – This type of black box testing is not related to testing of

specific functionality, but non-functional requirements such as performance, scalability,

usability.

 Regression testing – Regression Testing is done after code fixes, upgrades or any other

system maintenance to check the new code has not affected the existing code.

Black Box Testing Techniques

Following are the prominent Test Strategy amongst the many used in Black box Testing

 Equivalence Class Testing: It is used to minimize the number of possible test cases to

an optimum level while maintains reasonable test coverage.

 Boundary Value Testing: Boundary value testing is focused on the values at boundaries.

This technique determines whether a certain range of values are acceptable by the system

or not. It is very useful in reducing the number of test cases. It is most suitable for the

systems where an input is within certain ranges.

 Decision Table Testing: A decision table puts causes and their effects in a matrix. There

is a unique combination in each column.

White – box testing:

The box testing approach of software testing consists of black box testing and white box

testing. We are discussing here white box testing which also known as glass box is testing,

structural testing, clear box testing, open box testing and transparent box testing.

It tests internal coding and infrastructure of a software focus on checking of predefined

inputs against expected and desired outputs. It is based on inner workings of an application and

revolves around internal structure testing.

In this type of testing programming skills are required to design test cases. The primary

goal of white box testing is to focus on the flow of inputs and outputs through the software and

strengthening the security of the software.

The white box testing contains various tests, which are as follows:

o Path testing

o Loop testing

o Condition testing

o Testing based on the memory perspective

o Test performance of the program

Path testing---

In the path testing, we will write the flow graphs and test all independent paths. Here writing the

flow graph implies that flow graphs are representing the flow of the program and also show how

every program is added with one another as we can see in the below image:

Loop testing---

In the loop testing, we will test the loops such as while, for, and do-while, etc. and also check for

ending condition if working correctly and if the size of the conditions is enough.

Condition testing---

In this, we will test all logical conditions for both true and false values; that is, we will verify for

both if and else condition.

Testing based on the memory (size) perspective---

The size of the code is increasing for the following reasons:

o The reuse of code is not there: let us take one example, where we have four programs of

the same application, and the first ten lines of the program are similar. We can write these

ten lines as a discrete function, and it should be accessible by the above four programs as

well. And also, if any bug is there, we can modify the line of code in the function rather

than the entire code.

o The developers use the logic that might be modified. If one programmer writes code and

the file size is up to 250kb, then another programmer could write a similar code using the

different logic, and the file size is up to 100kb.

o The developer declares so many functions and variables that might never be used in

any portion of the code. Therefore, the size of the program will increase.

Test the performance (Speed, response time) of the program---

The application could be slow for the following reasons:

o When logic is used.

o For the conditional cases, we will use or & and adequately.

o Switch case, which means we cannot use nested if, instead of using a switch case.

Differences between Black Box Testing vs White Box Testing:

Black Box Testing White Box Testing

 It is a way of software testing in which

the internal structure or the program or

the code is hidden and nothing is

known about it.

 It is a way of testing the software in

which the tester has knowledge about

the internal structure or the code or

the program of the software.

 Implementation of code is not needed

for black box testing.

 Code implementation is necessary for

white box testing.

 It is mostly done by software testers.

 It is mostly done by software

developers.

 No knowledge of implementation is

needed.

 Knowledge of implementation is

required.

 It can be referred as outer or external

software testing.

 It is the inner or the internal software

testing.

 It is functional test of the software. It is structural test of the software.

 This testing can be initiated on the

basis of requirement specifications

document.

 This type of testing of software is

started after detail design document.

 No knowledge of programming is

required.

 It is mandatory to have knowledge of

programming.

 It is the behavior testing of the It is the logic testing of the software.

Black Box Testing White Box Testing

software.

 It is applicable to the higher levels of

testing of software.

 It is generally applicable to the lower

levels of software testing.

 It is also called closed testing. It is also called as clear box testing.

 It is least time consuming. It is most time consuming.

 It is not suitable or preferred for

algorithm testing. It is suitable for algorithm testing.

 Can be done by trial and error ways and

methods.

 Data domains along with inner or

internal boundaries can be better

tested.

 Example: search something on google

by using keywords

 Types of Black Box Testing:

 A. Functional Testing

 B. Non-functional testing

 C. Regression Testing

 Example: by input to check and

verify loops

 Types of White Box Testing:

 A. Path Testing

 B. Loop Testing

 C. Condition testing

Difference between Alpha and Beta Testing:

Alpha Testing Beta Testing

 Alpha testing involves both the

white box and black box testing.

 Beta testing commonly uses black-box

testing.

 Alpha testing is performed by

testers who are usually internal

employees of the organization.

 Beta testing is performed by clients who are

not part of the organization.

 Alpha testing is performed at

the developer’s site.

 Beta testing is performed at the end-user of

the product.

 Reliability and security testing Reliability, security and robustness are

Alpha Testing Beta Testing

are not checked in alpha testing. checked during beta testing.

 Alpha testing ensures the

quality of the product before

forwarding to beta testing.

 Beta testing also concentrates on the quality

of the product but collects users input on the

product and ensures that the product is ready

for real time users.

 Alpha testing requires a testing

environment or a lab.

 Beta testing doesn’t require a testing

environment or lab.

 Alpha testing may require a

long execution cycle.

 Beta testing requires only a few weeks of

execution.

 Developers can immediately

address the critical issues or

fixes in alpha testing.

 Most of the issues or feedback collected from

the beta testing will be implemented in future

versions of the product.

 Multiple test cycles are

organized in alpha testing.

 Only one or two test cycles are there in beta

testing.

Validation Testing

The definition of validation testing in software engineering is in place to determine if the

existing system complies with the system requirements and performs the dedicated functions for

which it is designed along with meeting the goals and needs of the organization.

This mode of testing is extremely important especially if you want to be one of the best

software testers. The software verification and validation testing is the process after the

validation testing stage is secondary to verification testing.

The Advantages of Validation Testing :

 To ensure customer satisfaction

 To be confident about the product

 To fulfill the client’s requirement until the optimum capacity

 Software acceptance from the end-user

Types of Validation Testing

Validation testing types a V-shaped testing pattern, which includes its variations and all the

activities that it consists of are:

Unit Testing – It is an important type of validation testing. The point of the unit testing is to

search for bugs in the product segment. Simultaneously, it additionally confirms crafted modules

and articles which can be tried independently.

Integration testing -This is a significant piece of the validation model wherein the interaction

between, where the association between the various interfaces of the pertaining component is

tried. Alongside the communication between the various pieces of the framework, the connection

of the framework with the PC working framework, document framework, equipment, and some

other programming framework it may cooperate with, is likewise tried.

System testing – System testing is done when the whole programming framework is prepared.

The principal worry of framework testing is to confirm the framework against the predefined

necessities. While doing the tests, the tester isn’t worried about the internals of the framework

however checks if the framework acts according to desires.

User acceptance testing – During this testing, the tester actually needs to think like the customer

and test the product concerning client needs, prerequisites, and business forms and decide if the

product can be given over to the customer or not.

System Testing
System Testing includes testing of a fully integrated software system. Generally, a

computer system is made with the integration of software (any software is only a single element

of a computer system).

The software is developed in units and then interfaced with other software and hardware

to create a complete computer system. In other words, a computer system consists of a group of

software to perform the various tasks, but only software cannot perform the task; for that

software must be interfaced with compatible hardware.

System testing is a series of different type of tests with the purpose to exercise and

examine the full working of an integrated software computer system against requirements.

Types of system test:

 Recovery testing

 Security testing

 Stress testing

 Performance testing

Recovery testing:

It is a system test that forces the software to fail in a variety of ways and verifies that recovery is

properly performed.

If recovery is automatic, reinitialization, check pointing, mechanisms, data recovery, and restart

and evaluated for correctness.

Security testing:

Verifies the protection mechanisms built into a system will.

Stress testing:

It executes a system in a manner that demands resources in abnormal quality, frequency, or

volume.

Performance testing:

It designed to test the run – time performance of software with in the context of an integrated

system.

The art of debugging

In the context of software engineering, debugging is the process of fixing a bug in the

software. In other words, it refers to identifying, analyzing, and removing errors. This activity

begins after the software fails to execute properly and concludes by solving the problem and

successfully testing the software. It is considered to be an extremely complex and tedious task

because errors need to be resolved at all stages of debugging.

The debugging process will always have one of two outcomes :

1. The cause will be found and corrected.

2. The cause will not be found.

Debugging Approaches/Strategies:
1. Brute Force: Study the system for a larger duration in order to understand the system. It

helps the debugger to construct different representations of systems to be debugging

depending on the need. A study of the system is also done actively to find recent changes

made to the software.

2. Backtracking: Backward analysis of the problem which involves tracing the program

backward from the location of the failure message in order to identify the region of faulty

code. A detailed study of the region is conducted to find the cause of defects.

3. Forward analysis of the program involves tracing the program forwards using breakpoints

or print statements at different points in the program and studying the results. The region

where the wrong outputs are obtained is the region that needs to be focused on to find the

defect.

4. Using the past experience of the software debug the software with similar problems in

nature. The success of this approach depends on the expertise of the debugger.

5. Cause elimination: it introduces the concept of binary partitioning. Data related to the

error occurrence are organized to isolate potential causes.

4.2. Product metrics

Software quality

Software quality is conformance to explicitly stated functional and performance requirements,

explicitly documented development standards, and implicit characteristics that are expected of all

professionally developed software.

McCall’s quality Factors

According to McCall’s model, product operation category includes five software quality factors,

which deal with the requirements that directly affect the daily operation of the software. They are

as follows –

Correctness:

These requirements deal with the correctness of the output of the software system. They include

−

 Output mission

 The required accuracy of output that can be negatively affected by inaccurate data or

inaccurate calculations.
 The completeness of the output information, which can be affected by incomplete data.

Reliability:

Reliability requirements deal with service failure. They determine the maximum allowed failure

rate of the software system, and can refer to the entire system or to one or more of its separate

functions.

Efficiency: It deals with the hardware resources needed to perform the different functions of the

software system.

Integrity: This factor deals with the software system security, that is, to prevent access to

unauthorized persons, also to distinguish between the group of people to be given read as well as

write permit.

Usability: Usability requirements deal with the staff resources needed to train a new employee

and to operate the software system.

Maintainability: This factor considers the efforts that will be needed by users and maintenance

personnel to identify the reasons for software failures, to correct the failures, and to verify the

success of the corrections.

Flexibility: This factor deals with the capabilities and efforts required to support adaptive

maintenance activities of the software.

Testability: Testability requirements deal with the testing of the software system as well as with

its operation.

Portability: Portability requirements tend to the adaptation of a software system to other

environments consisting of different hardware, different operating systems, and so forth.

Reusability: This factor deals with the use of software modules originally designed for one

project in a new software project currently being developed.

Interoperability: Interoperability requirements focus on creating interfaces with other software

systems or with other equipment firmware.

ISO 9126 QUALITY FACTORS:

1. Functionality: The functions are those that will satisfy implied needs.

 Suitability

 Accuracy

 Interoperability

 Security

 Functionality Compliance

2. Reliability: A set of attributes that will bear on the capability of software to maintain the

level of performance.

 Maturity

 Fault Tolerance

 Recoverability

 Reliability Compliance

3. Usability: A set of attributes that bear on the effort needed for use by a implied set of users.

 Understandability

 Learn ability

 Operability

 Attractiveness

 Usability Compliance

4. Efficiency: A set of attributes that bear on the relationship between the level of performance

of the software under stated conditions.

 Time Behavior

 Resource Utilization

 Efficiency Compliance

5. Maintainability: A set of attributes that bear on the effort needed to make specified

modifications.
 Analyzability

 Changeability

 Stability

 Testability

 Maintainability Compliance

6. Portability: A set of attributes that bear on the ability of software to be transferred from one

environment to another.

 Adaptability

 Installability

 Co-existence

 Replace ability

 Portability Compliance

Metrics for Analysis model

Technical work in software engineering begins with the creation of the analysis model. It is at

this stage that requirements are derived and that a foundation for design is established. Therefore,

technical metrics that provide insight into the quality of the analysis model are desirable.

Function-Based Metrics:

The function point metric an be used effectively as a means for predicting the size of a system

that will be derived from the analysis model.

The data flow diagram is evaluated to determine the key measures required for computation of

the function point metric :

• number of user inputs

• number of user outputs

• number of user inquiries

• number of files

• number of external interfaces

The count total FP = count total [0.65 + 0.01 (Fi)]

where count total is the sum of all FP entries obtained from the first figure and Fi (i = 1 to 14) are

"complexity adjustment values."

Metrics for Specification Quality

Davis and his colleagues propose a list of characteristics that can be used to assess the quality of

the analysis model and the corresponding requirements specification: specificity (lack of

ambiguity), completeness, correctness, understandability, verifiability, internal and external

consistency, achievability, concision, traceability, modifiability, precision, and reusability.

 we assume that there are nr requirements in a specification, such that

nr = nf + nnf

where nf is the number of functional requirements and nnf is the number of nonfunctional (e.g.,

performance) requirements.

 To determine the specificity (lack of ambiguity) of requirements, Davis et al. suggest a

metric that is based on the consistency of the reviewers’ interpretation of each

requirement:

Q1 = nui/nr

where nui is the number of requirements for which all reviewers had identical interpretations.

The closer the value of Q to 1, the lower is the ambiguity of the specification.

 The completeness of functional requirements can be determined by computing the ratio

Q2 = nu/[ni x ns]

where nu is the number of unique function requirements, ni is the number of inputs (stimuli)

defined or implied by the specification, and ns is the number of states specified. The Q2 ratio

measures the percentage of necessary functions that have been specified for a system.

 Q3 = nc/[nc + nnv]

where nc is the number of requirements that have been validated as correct and nnv is the

number of requirements that have not yet been validate

Metrics for design model

Design metrics for computer software, like all other software metrics, are not perfect.

Debate continues over their efficacy and the manner in which they should be applied. Many

experts argue that further experimentation is required before design measures can be used. And

yet, design without measurement is an unacceptable alternative .

1.Architectural Design Metrics

Architectural design metrics focus on characteristics of the program architecture with an

emphasis on the architectural structure and the effectiveness of modules. These metrics are black

box in the sense that they do not require any knowledge of the inner workings of a particular

software component.

Card and Glass define three software design complexity measures: structural complexity, data

complexity, and system complexity.

Structural complexity of a module i is defined in the following manner:

S(i) = f 2 out(i)

where fout(i) is the fan-out7 of module i.

Data complexity provides an indication of the complexity in the internal interface for a module i

and is defined as

D(i) = v(i)/[fout(i) +1]

where v(i) is the number of input and output variables that are passed to and from module i.

Finally, system complexity is defined as the sum of structural and data complexity, specified as

C(i) = S(i) + D(i)

size = n + a

where n is the number of nodes and a is the number of arcs. For the architecture shown in figure,

size = 17 + 18 = 35

depth = the longest path from the root (top) node to a leaf node. For the architecture shown

infigure, depth = 4.

width = maximum number of nodes at any one level of the architecture. For the architecture

shown in figure, width = 6.

arc-to-node ratio, r = a/n,

the Air Force uses information obtained from data and architectural design to derive a design

structure quality index (DSQI) that ranges from 0 to 1. The following values must be ascertained

to compute the DSQI :

S1 = the total number of modules defined in the program architecture.

S2 = the number of modules whose correct function depends on the source of data input or that

produce data to be used elsewhere (in general, control modules, among others, would not be

counted as part of S2).

S3 = the number of modules whose correct function depends on prior processing.

S4 = the number of database items (includes data objects and all attributes that define objects).

S5 = the total number of unique database items.

S6 = the number of database segments (different records or individual objects).

S7 = the number of modules with a single entry and exit (exception processing is not considered

to be a multiple exit).

Once values S1 through S7 are determined for a computer program, the following intermediate

values can be computed:

Program structure: D1, where D1 is defined as follows: If the architectural design was

developed using a distinct method (e.g., data flow-oriented design or object-oriented design),

then D1 = 1, otherwise D1 = 0.

Module independence: D2 = 1 (S2/S1)

Modules not dependent on prior processing: D3 = 1 (S3/S1)

Database size: D4 = 1 (S5/S4)

Database compartmentalization: D5 = 1 (S6/S4)

Module entrance/exit characteristic: D6 = 1 (S7/S1)

With these intermediate values determined, the DSQI is computed in the following manner:

DSQI = wiDi

where i = 1 to 6, wi is the relative weighting of the importance of each of the intermediate

values, and wi = 1 (if all Di are weighted equally, then wi = 0.167).

2. Metrics for object – oriented design

 Size

 Complexity

 Coupling

 Sufficiency

 Completeness

 Cohesion

 Primitiveness

 Similarity

 Volatility

Metrics for source code

HSS(Halstead Software science)

Primitive measure that may be derived after the code is generated or estimated once design is

Complete.

n1 = the number of distinct operators that appear in a program

n2 = the number of distinct operands that appear in a program

N1 = the total number of operator occurrences.

N2 = the total number of operand occurrence.

Overall program length N can be computed:

N = n1 log2 n1 + n2 log2 n2

V = N log2(n1+ n2)

V will vary with programming language and represent the volume of information required to

specify a program.

Halstead defines a volume ratio L as the ratio of volume of the most compact from of a program

to the volume of the actual program. In actuality, L must be less than 1.

In terms of primitive measures, the volume ratio may be expressed as

L=2/n1 * n2/N2

METRIC FOR TESTING

 Halstead metrics applied to testing:

n1 = the number of distinct operators that appear in a program

n2 = the number of distinct operands that appear in a program

N1 = the total number of operator occurrences.

N2 = the total number of operand occurrence.

Program Level and Effort

PL = 1/[(n1 / 2) x (N2 / n2 l)]

e = V/PL

 Metrics for object oriented testing

 Lack of cohesion in method(LCOM)

 Percent public and protected(PAP)

 public access to data members(PAD)

 Number of root classes(NOR)

 Fan-in (FIN)

METRICS FOR MAINTENANCE

Mt = the number of modules in the current release

Fc = the number of modules in the current release that have been changed

Fa = the number of modules in the current release that have been added.

Fd = the number of modules from the preceding release that were deleted in the current

release

The Software Maturity Index, SMI, is defined as:

SMI = [Mt–(Fc + Fa +Fd)/ Mt]

UNIT-V

 METRICS FOR PROCESS

Software measurement:

It can be categorized in two ways:

 Direct measures of the software process – cost and effort applied

 Indirect measures of the product – include functionality, quality, complexity, efficiency,

reliability, maintainability.

Size oriented metrics:

LOC Metrics

It is one of the earliest and simpler metrics for calculating the size of the computer program. It is

generally used in calculating and comparing the productivity of programmers. These metrics are

derived by normalizing the quality and productivity measures by considering the size of the

product as a metric.

Following are the points regarding LOC measures:

1. In size-oriented metrics, LOC is considered to be the normalization value.

2. It is an older method that was developed when FORTRAN and COBOL programming

were very popular.

3. Productivity is defined as KLOC / EFFORT, where effort is measured in person-months.

4. Size-oriented metrics depend on the programming language used.

5. As productivity depends on KLOC, so assembly language code will have more

productivity.

6. LOC measure requires a level of detail which may not be practically achievable.

7. The more expressive is the programming language, the lower is the productivity.

8. LOC method of measurement does not apply to projects that deal with visual (GUI-

based) programming. As already explained, Graphical User Interfaces (GUIs) use forms

basically. LOC metric is not applicable here.

9. It requires that all organizations must use the same method for counting LOC. This is so

because some organizations use only executable statements, some useful comments, and

some do not. Thus, the standard needs to be established.

10. These metrics are not universally accepted.

Based on the LOC/KLOC count of software, many other metrics can be computed:

a.

b.

Errors/KLOC.

$/ KLOC.

 c. Defects/KLOC.

 d.

e.

f.

g.

Pages of documentation/KLOC.

Errors/PM.

Productivity = KLOC/PM (effort is measured in person-months).

$/ Page of documentation.

Function – oriented metrics:

Function-Oriented Metrics are also known as Function Point Model. This model

generally focuses on the functionality of the software application being delivered.

These methods are actually independent of the programming language that is being

used in software applications and based on calculating the Function Point (FP). A function

point is a unit of measurement that measures the business functionality provided by the

business product.

Calculating Function Point :

Reconciling LOC and FP metrics:

Object – oriented metrics:

Lines of code and functional point metrics can be used for estimating object-oriented software projects.

object-oriented projects, different sets of metrics have been proposed. These are listed below.

 Number of scenario scripts: Scenario scripts are a sequence of steps, which depict the

interaction between the user and the application. A number of scenarios is directly related to

application size and number of test cases that are developed to test the software, once it is

developed. Note that scenario scripts are analogous to use-cases.

 Number of key classes: Key classes are independent components, which are defined in

object -oriented analysis. As key classes form the core of the problem domain, they indicate

the effort required to develop software and the amount of ‘reuse’ feature to be applied

during the development process.

 Number of support classes: Classes, which are required to implement the system but are

indirectly related to the problem domain, are known as support classes. For example, user

interface classes and computation class are support classes. It is possible to develop a

support class for each key class. Like key classes, support classes indicate the effort

required to develop software and the amount of ‘reuse’ feature to be applied during the

development process.

 Average number of support classes per key class: Key classes are defined early in the

software project while support classes are defined throughout the project. The estimation

process is simplified if the average number of support classes per key class is already

known.

 Number of subsystems: A collection of classes that supports a function visible to the user

is known as a subsystem. Identifying subsystems makes it easier to prepare a reasonable

schedule in which work on subsystems is divided among project members.

Web engineering project metrics:

 Number of static web pages

 Number of static web pages

 Number of internal page links

 Number of persistent data objects

 Number of external systems interfaced

 Number of static content objects

 Number of dynamic content objects

 Number of executable functions

Metrics for software quality:

Software Measurement is done based on some Software Metrics where these software

metrics are referred to as the measure of various characteristics of a Software.

In Software engineering Software Quality Assurance (SAQ) assures the quality of the

software. Set of activities in SAQ are continuously applied throughout the software

process. Software Quality is measured based on some software quality

1.Code Quality – Code quality metrics measure the quality of code used for the software

project development. Maintaining the software code quality by writing Bug-free and

semantically correct code is very important for good software project development.

2. Reliability – Reliability metrics express the reliability of software in different conditions.

The software is able to provide exact service at the right time or not is checked. Reliability can

be checked using Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR).

3. Performance – Performance metrics are used to measure the performance of the software.

Each software has been developed for some specific purposes. Performance metrics measure

the performance of the software by determining whether the software is fulfilling the user

requirements or not, by analyzing how much time and resource it is utilizing for providing the

service.

4. Usability – Usability metrics check whether the program is user-friendly or not. Each

software is used by the end-user. So it is important to measure that the end-user is happy or not

by using this software.

5. Correctness – Correctness is one of the important software quality metrics as this checks

whether the system or software is working correctly without any error by satisfying the user.

Correctness gives the degree of service each function provides as per developed.

6. Maintainability – Each software product requires maintenance and up-gradation.

Maintenance is an expensive and time-consuming process. So if the software product provides

easy maintainability then we can say software quality is up to mark. Maintainability metrics

include time requires to adapt to new features/functionality, Mean Time to Change (MTTC),

performance in changing environments, etc.

7. Integrity – Software integrity is important in terms of how much it is easy to integrate with

other required software’s which increases software functionality and what is the control on

integration from unauthorized software’s which increases the chances of cyber attacks.

8. Security – Security metrics measure how much secure the software is? In the age of cyber

terrorism, security is the most essential part of every software. Security assures that there are

no unauthorized changes, no fear of cyber attacks, etc when the software product is in use by

the end-user.

RISK MANAGEMENT

A software project can be concerned with a large variety of risks. In order to be adept to

systematically identify the significant risks which might affect a software project, it is essential

to classify risks into different classes. The project manager can then check which risks from each

class are relevant to the project.

There are three main classifications of risks which can affect a software project:

1. Project risks

2. Technical risks

3. Business risks

1. Project risks: Project risks concern differ forms of budgetary, schedule, personnel, resource,

and customer-related problems. A vital project risk is schedule slippage. Since the software is

intangible, it is very tough to monitor and control a software project. It is very tough to control

something which cannot be identified. For any manufacturing program, such as the

manufacturing of cars, the plan executive can recognize the product taking shape.

2. Technical risks: Technical risks concern potential method, implementation, interfacing,

testing, and maintenance issue. It also consists of an ambiguous specification, incomplete

specification, changing specification, technical uncertainty, and technical obsolescence. Most

technical risks appear due to the development team's insufficient knowledge about the project.

3. Business risks: This type of risks contain risks of building an excellent product that no one

need, losing budgetary or personnel commitments, etc.

Reactive vs proactive risk strategies:

Reactive risk management:

One fundamental point about reactive risk management is that the disaster or threat must occur

before management responds. Proactive risk management is all about taking preventative

measures before the event to decrease its severity, and that’s a good thing to do.

At the same time, however, organizations should develop reactive risk management plans that

can be deployed after the event. Otherwise management is making decisions about how to

respond as the event happens, which can be a costly and stressful ordeal.

Proactive Risk Management

As the name suggests, proactive risk management means that you identify risks before they

happen and figure out ways to avoid or alleviate the risk. It seeks to reduce the hazard’s risk

potential or, even better, prevent the threat altogether.

A good example here is vulnerability testing and remediation. Any organization of appreciable

size is likely to have vulnerabilities in its software, which attackers could find an exploit. So

regular testing (or, even better, continuous testing) can help to repair those vulnerabilities and

eliminate that particular threat.

Software risks

A software project can be concerned with a large variety of risks. In order to be adept to

systematically identify the significant risks which might affect a software project, it is essential

to classify risks into different classes. The project manager can then check which risks from each

class are relevant to the project.

There are three main classifications of risks which can affect a software project:

1. Project risks

2. Technical risks

3. Business risks

1. Project risks: Project risks concern differ forms of budgetary, schedule, personnel, resource,

and customer-related problems. A vital project risk is schedule slippage. Since the software is

intangible, it is very tough to monitor and control a software project. It is very tough to control

something which cannot be identified. For any manufacturing program, such as the

manufacturing of cars, the plan executive can recognize the product taking shape.

2. Technical risks: Technical risks concern potential method, implementation, interfacing,

testing, and maintenance issue. It also consists of an ambiguous specification, incomplete

specification, changing specification, technical uncertainty, and technical obsolescence. Most

technical risks appear due to the development team's insufficient knowledge about the project.

3. Business risks: This type of risks contain risks of building an excellent product that no one

need, losing budgetary or personnel commitments, etc.

Other risk categories

1. Known risks: Those risks that can be uncovered after careful assessment of the project

program, the business and technical environment in which the plan is being developed, and

more reliable data sources (e.g., unrealistic delivery date)

2. Predictable risks: Those risks that are hypothesized from previous project experience

(e.g., past turnover)

3. Unpredictable risks: Those risks that can and do occur, but are extremely tough to

identify in advance.

Risk identification

Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.). By identifying known and predictable risks, the project

manager takes a first step toward avoiding them when possible and controlling them when

necessary.

There are two distinct types of risks : generic risks and product-specific risks.

Generic risks are a potential threat to every software project. Product-specific risks can

be identified only by those with a clear understanding of the technology, the people, and the

environment that is specific to the project at hand.

One method for identifying risks is to create a risk item checklist. The checklist can

beused for risk identification and focuses on some subset of known and predictable risks in the

following generic subcategories:

• Product size—risks associated with the overall size of the software to be built or modified.

• Business impact—risks associated with constraints imposed by management or the

marketplace.

• Customer characteristics—risks associated with the sophistication of the customer and the

developer's ability to communicate with the customer in a timely manner.

• Process definition—risks associated with the degree to which the software process has been

defined and is followed by the development organization.

• Development environment—risks associated with the availability and quality of the tools to

be used to build the product.

• Technology to be built—risks associated with the complexity of the system to be built and the

"newness" of the technology that is packaged by the system.

Staff size and experience—risks associated with the overall technical and project experience of

the software engineers who will do the work.

Assessing Overall Project Risk

The following questions have derived from risk data obtained by surveying experienced software

project managers in different part of the world. The questions are ordered by their relative

importance to the success of a project.

1. Have top software and customer managers formally committed to support the project?

2. Are end-users enthusiastically committed to the project and the system/product to be built?

3. Are requirements fully understood by the software engineering team and their customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end-users have realistic expectations?

6. Is project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be implemented?

10. Is the number of people on the project team adequate to do the job?
11. Do all customer/user constituencies agree on the importance of the project and on the

requirements for the system/product to be built?

Risk Components and Drivers

software risk components—performance, cost, support, and schedule. In the context of this

discussion, the risk components are defined in the following manner:

• Performance risk—the degree of uncertainty that the product will meet its

requirements and be fit for its intended use.

• Cost risk—the degree of uncertainty that the project budget will be

maintained.

• Support risk—the degree of uncertainty that the resultant software will be

easy to correct, adapt, and enhance.

• Schedule risk—the degree of uncertainty that the project schedule will be

maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact

categories—negligible, marginal, critical, or catastrophic.

Risk projection

Risk projection, also called risk estimation, attempts to rate each risk in two ways—the

likelihood or probability that the risk is real and the consequences of the problems associated

with the risk, should it occur. The project planner, along with other managers and technical staff,

performs four risk projection activities:

(1) establish a scale that reflects the perceived likelihood of a risk,

(2) delineate the consequences of the risk,

(3) estimate the impact of the risk on the project and the product, and

(4)note the overall accuracy of the risk projection so that there will be no misunderstandings.

Developing a Risk Table

A risk table provides a project manager with a simple technique for risk projection .A project

team begins by listing all risks (no matter how remote) in the first column of the table. This can

be accomplished with the help of the risk item checklists Each risk is categorized in the second

column (e.g., PS implies a project size risk, BU implies a business risk).

All risks that lie above the cutoff line must be managed. The column labeled RMMM contains a

pointer into a Risk Mitigation, Monitoring and Management Plan or alternatively, a collection of

risk information sheets developed for all risks that lie above the cutoff.

Risk probability can be determined by making individual estimates and then developing a single

consensus value. Although that approach is workable, more sophisticated techniques for

determining risk probability have been developed.

Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature, its scope, and

its timing. The nature of the risk indicates the problems that are likely if it occurs.

Returning once more to the risk analysis approach proposed by the U.S. Air Force , the following

steps are recommended to determine the overall consequences of a risk:

1. Determine the average probability of occurrence value for each risk component.

2. Determine the impact for each component based on the criteria .

3. Complete the risk table and analyze the results as described in the preceding sections.

The overall risk exposure, RE, is determined using the following relationship:

RE = P x C

Risk identification. Only 70 percent of the software components scheduled for reuse will, in

fact, be integrated into the application. The remaining functionality will have to be custom

developed.

Risk probability. 80% (likely).

Risk impact. 60 reusable software components were planned. If only 70 percent can be used, 18

components would have to be developed from scratch (in addition to other custom software that

has been scheduled for development). Since the average component is 100 LOC and local data

indicate that the software engineering cost for each LOC is $14.00, the overall cost (impact) to

develop the components would be 18 x 100 x 14 = $25,200.

Risk exposure. RE = 0.80 x 25,200 ~ $20,200.

RISK REFINEMENT

During early stages of project planning, a risk may be stated quite generally. As time

passes and more is learned about the project and the risk, it may be possible to refine the risk into

a set of more detailed risks, each somewhat easier to mitigate, monitor, and manage.

One way to do this is to represent the risk in condition-transition-consequence (CTC) format .

That is, the risk is stated in the following form: Given that <condition> then there is concern that

(possibly) <consequence>.

Using the CTC format for the reuse risk noted in Section 6.4.2, we can write:

Given that all reusable software components must conform to specific design standards and that

some do not conform, then there is concern that (possibly) only 70 percent of the planned

reusable modules may actually be integrated into the as-built system, resulting in the need to

custom engineer the remaining 30 percent of components.

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been solidified and may

not conform to certain existing reusable components.

Subcondition 3. Certain reusable components have been implemented in a language that is not

supported on the target environment.

The consequences associated with these refined subconditions remains the same (i.e., 30 percent

of software components must be customer engineered), but the refinement helps to isolate the

underlying risks and might lead to easier analysis and response.

RISK MIGRATION, MONITORING, AND MANAGEMENT

Risk Migration:

It is an activity used to avoid problems (Risk Avoidance).

Steps for mitigating the risks as follows.

1. Finding out the risk.

2. Removing causes that are the reason for risk creation.

3. Controlling the corresponding documents from time to time.

4. Conducting timely reviews to speed up the work.

To mitigate this risk, project management must develop a strategy for reducing turnover. The

possible steps to be taken are:

 Meet the current staff to determine causes for turnover (e.g., poor working conditions, low

pay, competitive job market).

 Mitigate those causes that are under our control before the project starts.

 Once the project commences, assume turnover will occur and develop techniques to ensure

continuity when people leave.

 Organize project teams so that information about each development activity is widely

dispersed.

 Define documentation standards and establish mechanisms to ensure that documents are

developed in a timely manner.

 Assign a backup staff member for every critical technologist.

Risk Monitoring :

It is an activity used for project tracking.

It has the following primary objectives as follows.

1. To check if predicted risks occur or not.

2. To ensure proper application of risk aversion steps defined for risk.

3. To collect data for future risk analysis.

4. To allocate what problems are caused by which risks throughout the project.

As the project proceeds, risk monitoring activities commence. The project manager

monitors factors that may provide an indication of whether the risk is becoming more or less

likely. In the case of high staff turnover, the following factors can be monitored:

 General attitude of team members based on project pressures.

 Interpersonal relationships among team members.

 Potential problems with compensation and benefits.

 The availability of jobs within the company and outside it.

Risk Management and planning :

 Maintain a worldwide perspective: view software risks within the context of a system

and therefore the business drawback planned to solve.
 Take an advanced view: ink regarding the risk which can occur in the longer term and

make future plans for managing the future events.

 Encourage open communication: Encourage all the stakeholders and users for suggesting

risks at any time.

 Integrate: A thought of risk should be integrated into the software process.

 Emphasize never-ending process: Modify the known risk than a lot of info is understood

and add new risks as higher insight is achieved.

 Develop a shared product vision: If all the stakeholders share a similar vision of the

software then it’s easier for better risk identification.

 Encourage teamwork: whereas conducting risk management activities pool the skills and

knowledge of all stakeholders.

Drawbacks of RMMM:

 It incurs additional project costs.

 It takes additional time.

 For larger projects, implementing an RMMM may itself turn out to be another tedious

project.

 RMMM does not guarantee a risk-free project, infact, risks may also come up after the

project is delivered.

THE RMMM PLAN

A risk management technique is usually seen in the software Project plan. This can be divided

into Risk Mitigation, Monitoring, and Management Plan (RMMM). In this plan, all works are

done as part of risk analysis. As part of the overall project plan project manager generally uses

this RMMM plan.

In some software teams, risk is documented with the help of a Risk Information Sheet (RIS).

This RIS is controlled by using a database system for easier management of information i.e

creation, priority ordering, searching, and other analysis. After documentation of RMMM and

start of a project, risk mitigation and monitoring steps will start.

QUALITY MANAGEMENT

QUALITY CONCEPTS:

QUALITY:

Software quality product is defined in term of its fitness of purpose. That is, a quality product

does precisely what the users want it to do. For software products, the fitness of use is generally

explained in terms of satisfaction of the requirements laid down in the SRS document. Although

"fitness of purpose" is a satisfactory interpretation of quality for many devices such as a car, a

table fan, a grinding machine, etc.for software products, "fitness of purpose" is not a wholly

satisfactory definition of quality.

Example: Consider a functionally correct software product. That is, it performs all tasks as

specified in the SRS document. But, has an almost unusable user interface. Even though it may

be functionally right, we cannot consider it to be a quality product.

User satisfaction= compliant product + good quality + delivery within budget and schedule

Quality control

It can be compared to having a senior manager walk into a production department and pick a

random car for an examination and test drive. Testing activities, in this case, refer to the process

of checking every joint, every mechanism separately, as well as the whole product, whether

manually or automatically, conducting crash tests, performance tests, and actual or simulated test

drives.

Quality Assurance is a broad term, explained on “the continuous and consistent improvement

and maintenance of process that enables the QC job”. As follows from the definition, QA

focuses more on organizational aspects of quality management, monitoring the consistency of

the production process.

Cost of Quality :
It is the most established, effective measure of quantifying and calculating the business value

of testing. There are four categories to measure cost of quality: Prevention costs, Detection

costs, Internal failure costs, and External failure costs.

These are explained as follows below.

1. Prevention costs include cost of training developers on writing secure and easily

maintainable code

2. Detection costs include the cost of creating test cases, setting up testing environments,

revisiting testing requirements.

3. Internal failure costs include costs incurred in fixing defects just before delivery.

4. External failure costs include product support costs incurred by delivering poor quality

software.
Major parts of total cost are detecting defects and internal failure cost. But, these costs less

than external failure costs. That’s why testing provides good business value.

Software quality assurance

Software Quality: Software Quality is defined as the conformance to explicitly state functional

and performance requirements, explicitly documented development standards, and inherent

characteristics that are expected of all professionally developed software.

Quality Control: Quality Control involves a series of inspections, reviews, and tests used

throughout the software process to ensure each work product meets the requirements place upon

it. Quality control includes a feedback loop to the process that created the work product.

Quality Assurance: Quality Assurance is the preventive set of activities that provide greater

confidence that the project will be completed successfully.

Quality Assurance focuses on how the engineering and management activity will be done?

As anyone is interested in the quality of the final product, it should be assured that we are

building the right product.

It can be assured only when we do inspection & review of intermediate products, if there are any

bugs, then it is debugged. This quality can be enhanced.

Software Quality Assurance

Software quality assurance is a planned and systematic plan of all actions necessary to provide

adequate confidence that an item or product conforms to establish technical requirements.

A set of activities designed to calculate the process by which the products are developed or

manufactured.

SQA Encompasses

o A quality management approach

o Effective Software engineering technology (methods and tools)

o Formal technical reviews that are tested throughout the software process

o A multitier testing strategy

o Control of software documentation and the changes made to it.

o A procedure to ensure compliances with software development standards

o Measuring and reporting mechanisms.

SQA Activities

Software quality assurance is composed of a variety of functions associated with two different

constituencies? the software engineers who do technical work and an SQA group that has

responsibility for quality assurance planning, record keeping, analysis, and reporting.

Following activities are performed by an independent SQA group:

1. Prepares an SQA plan for a project: The program is developed during project planning

and is reviewed by all stakeholders. The plan governs quality assurance activities

performed by the software engineering team and the SQA group. The plan identifies

calculation to be performed, audits and reviews to be performed, standards that apply to

the project, techniques for error reporting and tracking, documents to be produced by the

SQA team, and amount of feedback provided to the software project team.

2. Participates in the development of the project's software process description: The

software team selects a process for the work to be performed. The SQA group reviews

the process description for compliance with organizational policy, internal software

standards, externally imposed standards (e.g. ISO-9001), and other parts of the software

project plan.

3. Reviews software engineering activities to verify compliance with the defined

software process: The SQA group identifies, reports, and tracks deviations from the

process and verifies that corrections have been made.

4. Audits designated software work products to verify compliance with those defined

as a part of the software process: The SQA group reviews selected work products,

identifies, documents and tracks deviations, verify that corrections have been made, and

periodically reports the results of its work to the project manager.

5. Ensures that deviations in software work and work products are documented and

handled according to a documented procedure: Deviations may be encountered in the

project method, process description, applicable standards, or technical work products.

6. Records any noncompliance and reports to senior management: Non- compliance

items are tracked until they are resolved.

Software reviews

Software Review

It is systematic inspection of a software by one or more individuals who work together to find

and resolve errors and defects in the software during the early stages of Software Development

Life Cycle (SDLC).

Software review is an essential part of Software Development Life Cycle (SDLC) that helps

software engineers in validating the quality, functionality and other vital features and

components of the software. It is a whole process that includes testing the software product and

it makes sure that it meets the requirements stated by the client.

Usually performed manually, software review is used to verify various documents like

requirements, system designs, codes, test plans and test cases.

Objectives of Software Review:

The objective of software review is:

1. To improve the productivity of the development team.

2. To make the testing process time and cost effective.

3. To make the final software with fewer defects.

4. To eliminate the inadequacies.

Cost impact of software defects

The primary objective of formal technical reviews is to find errors during the process so that they

do not become defects after release of the software.

Defect amplification and removal

A defect amplification model can be used to illustrate the generation and detection of errors

during the preliminary design, detail design, and coding steps of a software engineering process.

Defect amplification model:

Defect amplification – no reviews:

Defect amplification – reviews conducted:

Formal technical reviews

Formal Technical Review (FTR) is a software quality control activity performed by software

engineers.

Objectives of formal technical review (FTR): Some of these are:

 Useful to uncover error in logic, function and implementation for any representation of the

software.

 The purpose of FTR is to verify that the software meets specified requirements.

 To ensure that software is represented according to predefined standards.

 It helps to review the uniformity in software that is development in a uniform manner.

 To makes the project more manageable.

In addition, the purpose of FTR is to enable junior engineer to observer the analysis, design,

coding and testing approach more closely. FTR also works to promote back up and continuity

become familiar with parts of software they might not have seen otherwise. Actually, FTR is a

class of reviews that include walkthroughs, inspections, round robin reviews and other small

group technical assessments of software. Each FTR is conducted as meeting and is considered

successful only if it is properly planned, controlled and attended.

The review meeting:

Each review meeting should be held considering the following constraints- Involvement of

people:

1. Between 3, 4 and 5 people should be involve in the review.

2. Advance preparation should occur but it should be very short that is at the most 2 hours of

work for every person.

3. The short duration of the review meeting should be less than two hour. Gives these

constraints, it should be clear that an FTR focuses on specific (and small) part of the overall

software.

At the end of the review, all attendees of FTR must decide what to do.

1. Accept the product without any modification.

2. Reject the project due to serious error (Once corrected, another app need to be reviewed), or

3. Accept the product provisional (minor errors are encountered and are should be corrected,

but no additional review will be required).

The decision was made, with all FTR attendees completing a sign-of indicating their

participation in the review and their agreement with the findings of the review team.

Review reporting and record keeping :-

1. During the FTR, the reviewer actively records all issues that have been raised.

2. At the end of the meeting all these issues raised are consolidated and a review list is

prepared.

3. Finally, a formal technical review summary report is prepared.

It answers three questions :-

1. What was reviewed ?

2. Who reviewed it ?

3. What were the findings and conclusions ?

Review guidelines :-

Guidelines for the conducting of formal technical reviews should be established in advance.

These guidelines must be distributed to all reviewers, agreed upon, and then followed. A

review that is unregistered can often be worse than a review that does not minimum set of

guidelines for FTR.

1. Review the product, not the manufacture (producer).

2. Take written notes (record purpose)

3. Limit the number of participants and insists upon advance preparation.

4. Develop a checklist for each product that is likely to be reviewed.

5. Allocate resources and time schedule for FTRs in order to maintain time schedule.

6. Conduct meaningful training for all reviewers in order to make reviews effective.

7. Reviews earlier reviews which serve as the base for the current review being conducted.

8. Set an agenda and maintain it.

9. Separate the problem areas, but do not attempt to solve every problem notes.

10. Limit debate and rebuttal.

Statistical software quality assurance

 Collect and categorize information (i.e., causes) about software defects that occur

 Attempt to trace each defect to its underlying cause (e.g., nonconformance to

specifications, design error, violation of standards, poor communication with the

customer)

 Using the Pareto principle (80% of defects can be traced to 20% of all causes), isolate the

20%

A generic example

 A sample of possible causes for defects:

 Incomplete or erroneous specifications

 Misinterpretation of customer communication

 Intentional deviation from specifications

 Violation of programming standards

 Errors in data representation

 Inconsistent component interface

 Errors in design logicIncomplete or erroneous testing

 Inaccurate or incomplete documentation

 Errors in programming language translation of design

 Ambiguous or inconsistent human/computer interface

Six sigma

 Popularized by Motorola in the 1980s Is the most widely used strategy for statistical

quality assurance

 Uses data and statistical analysis to measure and improve a company's operational

performance Identifies and eliminates defects in manufacturing and servicerelated

processes

 The "Six Sigma" refers to six standard deviations (3.4 defects per a million

occurrences)

Three core steps

 Define customer requirements, deliverables, and project goals via well-defined

 methods of customer communication

 Measure the existing process and its output to determine current quality

performance (collect defect metrics)

 Analyze defect metrics and determine the vital few causes (the 20%)

 Two additional steps are added for existing processes (and can be done in

parallel)

 Improve the process by eliminating the root causes of defects

 Control the process to ensure that future work does not reintroduce the causes of

defects

Software reliability

Software Reliability means Operational reliability. It is described as the ability of a system or

component to perform its required functions under static conditions for a specific period.

Software reliability is also defined as the probability that a software system fulfills its assigned

task in a given environment for a predefined number of input cases, assuming that the hardware

and the input are free of error.

Measures of reliability and availability

Two meaningful metrics used in this evaluation are Reliability and Availability. Often

mistakenly used interchangeably, both terms have different meanings, serve different purposes,

and can incur different cost to maintain desired standards of service levels.

Availability refers to the percentage of time that the infrastructure, system, or solution remains

operational under normal circumstances in order to serve its intended purpose. For cloud

infrastructure solutions, availability relates to the time that the data center is accessible or

delivers the intend IT service as a proportion of the duration for which the service is purchased.

The mathematical formula for Availability is :

Percentage of availability = (total elapsed time – sum of downtime)/total elapsed time

Reliability refers to the probability that the system will meet certain performance standards in

yielding correct output for a desired time duration.

Reliability can be used to understand how well the service will be available in context of

different real-world conditions. For instance, a cloud solution may be available with an SLA

commitment of 99.999 percent, but vulnerabilities to sophisticated cyber-attacks may cause IT

outages beyond the control of the vendor. As a result, the service may be compromised for

several days, thereby reducing the effective availability of the IT service.

MTBF = (total elapsed time – sum of downtime)/number of failures

Where MTBF means mean time between failures

Software safety:

As systems and products become more and more dependent on software components it is no

longer realistic to develop a system safety program that does not include the software elements.

Does software fail? We tend to believe that well written, well tested, safety critical software

never fails. Experience proves otherwise with software making headlines when it actually does

fail, sometimes critically. Software does not fail the same way hardware does, and the various

failure behaviors we are accustomed to from the world of hardware are often not applicable to

software. However, software does fail, and when it does, it can be just as catastrophic as

hardware failures.

Safety-critical software

Safety-critical software is a creature very different from both non-critical software and safety-

critical hardware. The difference lies in the massive testing program that such software

undergoes.

The ISO 9000 QUALITY STANDARDS

A quality assurance system may be defined as the organizational structure, responsibilities,

procedures, processes, and resources for implementing quality management.

Quality assurance systems are created to help organizations ensure their products and services

satisfy customer expectations by meeting their specifications. These systems cover a wide

variety of activities encompassing a product’s entire life cycle including planning, controlling,

measuring, testing and reporting, and improving quality levels throughout the development and

manufacturing process. ISO 9000 describes quality assurance elements in generic terms that can

be applied to any business regardless of the products or services offered.

The ISO 9000 standards have been adopted by many countries including all members of the

European Community, Canada, Mexico, the United States, Australia, New Zealand, and the

Pacific Rim. Countries in Latin and South America have also shown interest in the standards.

The ISO Approach to Quality Assurance Systems

The ISO 9000 quality assurance models treat an enterprise as a network of interconnected

processes. For a quality system to be ISO compliant, these processes must address the areas

identified in the standard and must be documented and practiced as described.

The ISO 9001 Standard

ISO 9001 is the quality assurance standard that applies to software engineering. The standard

contains 20 requirements that must be present for an effective quality assurance system. Because

the ISO 9001 standard is applicable to all engineering disciplines, a special set of ISO guidelines

(ISO 9000-3) have been developed to help interpret the standard for use in the software process.

	Software engineering
	Software engineering Unit II
	Functional Requirements:
	NON- FUNCTIONAL REQUIREMENTS:
	USER REQUIREMENTS:
	System Requirements:
	Structured language specifications:

	Interface requirements:
	SOFTWARE REQUIREMENTS DOCUMENT:
	IEEE Standards suggests the following structure for requirements documents:
	SPIRAL REPRESENTATION OF REQUIREMENTSENGINEERING PROCESS

	FEASIBILITY STUDIES
	REQUIREMENTS ELICITATION ANALYSIS
	REQUIREMENTS ELICITATION PROCESS
	REQUIEMENTS DICOVERY TECHNIQUES

	REQUIREMENTS VALIDATION
	Requirements management planning
	Traceability
	CASE tools:

	SYSTEM MODELS
	CONTEXT MODELS
	Behavioral models
	State machine models
	DATA MODELS
	OBJECT MODELS
	OBJECT MODELS INHERITANCE MODELS
	OBJECT MODELS OBJECT AGGREGATION

	UNIT III DESIGN ENGINEERING
	DESIGN PROCESS
	DESIGN QUALITY
	QUALITY GUIDELINES
	QUALITY ATTRIBUTES

	DESIGN CONCEPTS
	2. ARCHITECTURE
	3. PATTERNS
	5. INFORMATION HIDING
	6. FUNCTIONAL INDEPENDENCE
	7. REFINEMENT
	8. REFACTORING
	9. DESIGN CLASSES

	THE DESIGN MODEL
	Introduction of Design Model
	1. Data Design Elements
	2. Architectural Design Elements:
	3. Interface Design Elements
	4. Component-Level Design Elements
	5. Deployment-Level Design Elements

	Software architecture:
	Data design
	1. Data Design at the Architectural Level
	2. Data Design at the Component Level

	Architectural styles and patterns
	1. Data-centered architecture
	2. Data-flow architecture
	3. Call and return architectures
	Following are the sub styles exist in this category: a)Main program or subprogram architecture
	b)Remote procedure call architecture
	4. Object-oriented architectures
	5. Layered architectures

	Architectural patterns:
	Different Software Architecture Patterns :
	1. LayeredPattern :
	2. Client-ServerPattern :
	3. Event-DrivenPattern :
	4. MicrokernelPattern :
	5. MicroservicesPattern :

	Architectural design
	Representing the System in Context
	Defining Archetypes
	Refining the Architecture into Components
	Describing Instantiations of the System
	Three Aspects of UML:
	1. Language:
	2. Model:
	3. Unified:
	A Conceptual Model:
	BASIC STRUCTURAL MODELING
	1.Classes:
	2.Relationships:
	3. Common Mechanisms:
	4. Diagrams: Structural Diagrams
	Behavioral Diagrams

	Sequence Diagram:
	Use Case Diagrams
	Component Diagrams:
	UNIT-4 TESTING STRATEGIES
	Strategic Approach to software testing:
	 Verification and Validation
	Verification:"Are we building the product right?" Validation: "Are we building the right product?"

	Test strategies for Conventional Software
	Unit Test :
	 Finally, all error-handling paths are tested
	Different Integration Testing Strategies :
	Top-down testing
	BOTTOM-UP INTEGRATION TESTING:
	A bottom-up integration strategy may be implemented with the following steps…
	REGRESSION TESTING:
	SMOKE TESTING:
	Smoke testing is performed by developers before releasing the build to the testing team and after releasing the build to the testing team it is performed by testers whether to accept the build for further testing or not.
	 Error diagnosis and correction are simplified.
	 Types of Black Box Testing
	Black Box Testing Techniques
	Path testing---
	Loop testing---
	Condition testing---
	Testing based on the memory (size) perspective---
	Test the performance (Speed, response time) of the program---
	Differences between Black Box Testing vs White Box Testing:
	Black Box Testing White Box Testing
	Black Box Testing White Box Testing (1)
	 Types of Black Box Testing:
	 Types of White Box Testing:

	Difference between Alpha and Beta Testing:
	Alpha Testing Beta Testing
	Alpha Testing Beta Testing (1)

	Validation Testing
	Types of Validation Testing

	System Testing
	Types of system test:
	Recovery testing:
	Security testing:
	Stress testing:
	Performance testing:

	The art of debugging
	Debugging Approaches/Strategies:

	4.2. Product metrics
	McCall’s quality Factors
	Correctness:
	Reliability:
	ISO 9126 QUALITY FACTORS:

	Metrics for Analysis model
	Function-Based Metrics:
	Metrics for Specification Quality
	nr = nf + nnf
	Q1 = nui/nr
	Q2 = nu/[ni x ns]
	 Q3 = nc/[nc + nnv]

	Metrics for design model
	1. Architectural Design Metrics
	S(i) = f 2 out(i)
	D(i) = v(i)/[fout(i) +1]
	C(i) = S(i) + D(i)
	DSQI = wiDi
	2. Metrics for object – oriented design

	Metrics for source code
	METRIC FOR TESTING
	METRICS FOR MAINTENANCE

	UNIT-V
	Size oriented metrics:
	LOC Metrics
	Following are the points regarding LOC measures:
	Based on the LOC/KLOC count of software, many other metrics can be computed:
	Calculating Function Point :
	Web engineering project metrics:

	Metrics for software quality:
	RISK MANAGEMENT
	Reactive vs proactive risk strategies:
	Reactive risk management:
	Proactive Risk Management

	Software risks
	Other risk categories

	Risk identification
	Assessing Overall Project Risk
	Risk Components and Drivers
	Developing a Risk Table
	Assessing Risk Impact

	RISK MIGRATION, MONITORING, AND MANAGEMENT
	Risk Migration:
	Risk Monitoring :
	Risk Management and planning :
	Drawbacks of RMMM:

	THE RMMM PLAN
	QUALITY MANAGEMENT
	QUALITY:
	Quality control
	Cost of Quality :

	Software quality assurance
	Following activities are performed by an independent SQA group:

	Software reviews
	Software Review
	Objectives of Software Review:
	Cost impact of software defects
	Defect amplification and removal

	Formal technical reviews
	The review meeting:
	Review reporting and record keeping :-
	Review guidelines :-

	Statistical software quality assurance
	A generic example
	Three core steps

	Software reliability
	Measures of reliability and availability
	Percentage of availability = (total elapsed time – sum of downtime)/total elapsed time
	MTBF = (total elapsed time – sum of downtime)/number of failures
	Safety-critical software

	The ISO 9000 QUALITY STANDARDS
	The ISO Approach to Quality Assurance Systems
	The ISO 9001 Standard

